Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898314458> ?p ?o ?g. }
- W2898314458 endingPage "1667" @default.
- W2898314458 startingPage "1658" @default.
- W2898314458 abstract "This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features.For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively.we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location.The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia." @default.
- W2898314458 created "2018-11-02" @default.
- W2898314458 creator A5001730991 @default.
- W2898314458 creator A5005856634 @default.
- W2898314458 creator A5013978849 @default.
- W2898314458 creator A5021004650 @default.
- W2898314458 creator A5025222082 @default.
- W2898314458 creator A5036225631 @default.
- W2898314458 creator A5040650892 @default.
- W2898314458 creator A5047321324 @default.
- W2898314458 creator A5055472400 @default.
- W2898314458 creator A5070065709 @default.
- W2898314458 creator A5077754744 @default.
- W2898314458 creator A5088395456 @default.
- W2898314458 date "2019-06-01" @default.
- W2898314458 modified "2023-10-01" @default.
- W2898314458 title "Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods" @default.
- W2898314458 cites W1842589914 @default.
- W2898314458 cites W1850308234 @default.
- W2898314458 cites W1966784962 @default.
- W2898314458 cites W1974192990 @default.
- W2898314458 cites W2000813601 @default.
- W2898314458 cites W2005423258 @default.
- W2898314458 cites W2018504033 @default.
- W2898314458 cites W2056039431 @default.
- W2898314458 cites W2099130910 @default.
- W2898314458 cites W2115350250 @default.
- W2898314458 cites W2138956456 @default.
- W2898314458 cites W2152113766 @default.
- W2898314458 cites W2165571897 @default.
- W2898314458 cites W2168407127 @default.
- W2898314458 cites W2481757162 @default.
- W2898314458 cites W2498215202 @default.
- W2898314458 cites W2515937300 @default.
- W2898314458 cites W2517449108 @default.
- W2898314458 cites W2603774824 @default.
- W2898314458 cites W2702116941 @default.
- W2898314458 cites W2744962325 @default.
- W2898314458 cites W2781924583 @default.
- W2898314458 cites W2794228650 @default.
- W2898314458 cites W2795340004 @default.
- W2898314458 cites W3102476541 @default.
- W2898314458 cites W77580924 @default.
- W2898314458 doi "https://doi.org/10.1109/tbme.2018.2877649" @default.
- W2898314458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30369432" @default.
- W2898314458 hasPublicationYear "2019" @default.
- W2898314458 type Work @default.
- W2898314458 sameAs 2898314458 @default.
- W2898314458 citedByCount "56" @default.
- W2898314458 countsByYear W28983144582019 @default.
- W2898314458 countsByYear W28983144582020 @default.
- W2898314458 countsByYear W28983144582021 @default.
- W2898314458 countsByYear W28983144582022 @default.
- W2898314458 countsByYear W28983144582023 @default.
- W2898314458 crossrefType "journal-article" @default.
- W2898314458 hasAuthorship W2898314458A5001730991 @default.
- W2898314458 hasAuthorship W2898314458A5005856634 @default.
- W2898314458 hasAuthorship W2898314458A5013978849 @default.
- W2898314458 hasAuthorship W2898314458A5021004650 @default.
- W2898314458 hasAuthorship W2898314458A5025222082 @default.
- W2898314458 hasAuthorship W2898314458A5036225631 @default.
- W2898314458 hasAuthorship W2898314458A5040650892 @default.
- W2898314458 hasAuthorship W2898314458A5047321324 @default.
- W2898314458 hasAuthorship W2898314458A5055472400 @default.
- W2898314458 hasAuthorship W2898314458A5070065709 @default.
- W2898314458 hasAuthorship W2898314458A5077754744 @default.
- W2898314458 hasAuthorship W2898314458A5088395456 @default.
- W2898314458 hasConcept C119857082 @default.
- W2898314458 hasConcept C12267149 @default.
- W2898314458 hasConcept C153180895 @default.
- W2898314458 hasConcept C154945302 @default.
- W2898314458 hasConcept C164705383 @default.
- W2898314458 hasConcept C2778475581 @default.
- W2898314458 hasConcept C2780040984 @default.
- W2898314458 hasConcept C41008148 @default.
- W2898314458 hasConcept C46686674 @default.
- W2898314458 hasConcept C52622490 @default.
- W2898314458 hasConcept C71924100 @default.
- W2898314458 hasConcept C84525736 @default.
- W2898314458 hasConceptScore W2898314458C119857082 @default.
- W2898314458 hasConceptScore W2898314458C12267149 @default.
- W2898314458 hasConceptScore W2898314458C153180895 @default.
- W2898314458 hasConceptScore W2898314458C154945302 @default.
- W2898314458 hasConceptScore W2898314458C164705383 @default.
- W2898314458 hasConceptScore W2898314458C2778475581 @default.
- W2898314458 hasConceptScore W2898314458C2780040984 @default.
- W2898314458 hasConceptScore W2898314458C41008148 @default.
- W2898314458 hasConceptScore W2898314458C46686674 @default.
- W2898314458 hasConceptScore W2898314458C52622490 @default.
- W2898314458 hasConceptScore W2898314458C71924100 @default.
- W2898314458 hasConceptScore W2898314458C84525736 @default.
- W2898314458 hasFunder F4320321885 @default.
- W2898314458 hasIssue "6" @default.
- W2898314458 hasLocation W28983144581 @default.
- W2898314458 hasLocation W28983144582 @default.
- W2898314458 hasOpenAccess W2898314458 @default.
- W2898314458 hasPrimaryLocation W28983144581 @default.
- W2898314458 hasRelatedWork W121629312 @default.