Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898341738> ?p ?o ?g. }
- W2898341738 endingPage "37" @default.
- W2898341738 startingPage "27" @default.
- W2898341738 abstract "Geosensor data forecasting has high practical value in government affairs such as prompt response and decision making. However, the spatial correlation across distinct sites and the temporal correlation within each site pose challenges to accurate forecasting. In this paper, a geosensor data forecasting tensor framework for significant societal events is proposed. Specifically, a tensor pattern is used to model the geosensor data, based on which a tensor decomposition algorithm is then developed to estimate future values of geosensor data. The proposed approach not only combines and utilizes the multi-mode correlations, but also well extracts the underlying factors in each mode of tensor and mines the multi-dimensional structures of geosensor data. In addition, a rank increasing strategy is used to determine tensor rank automatically, and a sliding window strategy is used to improve the prediction accuracy. Extensive experimental evaluations illustrate the superiority of our approach compared with the state-of-the-arts." @default.
- W2898341738 created "2018-11-02" @default.
- W2898341738 creator A5005026076 @default.
- W2898341738 creator A5034357412 @default.
- W2898341738 creator A5037677450 @default.
- W2898341738 creator A5044959745 @default.
- W2898341738 creator A5065798206 @default.
- W2898341738 creator A5067600725 @default.
- W2898341738 creator A5087560192 @default.
- W2898341738 date "2019-04-01" @default.
- W2898341738 modified "2023-10-14" @default.
- W2898341738 title "A tensor framework for geosensor data forecasting of significant societal events" @default.
- W2898341738 cites W1538959772 @default.
- W2898341738 cites W1568416770 @default.
- W2898341738 cites W1662573534 @default.
- W2898341738 cites W1672347394 @default.
- W2898341738 cites W1798398164 @default.
- W2898341738 cites W1814521481 @default.
- W2898341738 cites W1977355761 @default.
- W2898341738 cites W1983364832 @default.
- W2898341738 cites W1986326495 @default.
- W2898341738 cites W2024165284 @default.
- W2898341738 cites W2026956335 @default.
- W2898341738 cites W2035299679 @default.
- W2898341738 cites W2091449379 @default.
- W2898341738 cites W2094350745 @default.
- W2898341738 cites W2116512828 @default.
- W2898341738 cites W2147512299 @default.
- W2898341738 cites W2169242504 @default.
- W2898341738 cites W2313683095 @default.
- W2898341738 cites W2340067146 @default.
- W2898341738 cites W2407348013 @default.
- W2898341738 cites W2519420704 @default.
- W2898341738 cites W2547107546 @default.
- W2898341738 cites W2581220703 @default.
- W2898341738 cites W2592284297 @default.
- W2898341738 cites W2600860262 @default.
- W2898341738 cites W2616654950 @default.
- W2898341738 cites W2620678361 @default.
- W2898341738 cites W2620822707 @default.
- W2898341738 cites W2650688300 @default.
- W2898341738 cites W2746626573 @default.
- W2898341738 cites W2747672283 @default.
- W2898341738 cites W2753554633 @default.
- W2898341738 cites W2762034449 @default.
- W2898341738 cites W2764242203 @default.
- W2898341738 cites W2765426175 @default.
- W2898341738 cites W2774824934 @default.
- W2898341738 cites W2790057412 @default.
- W2898341738 cites W2795847830 @default.
- W2898341738 doi "https://doi.org/10.1016/j.patcog.2018.10.021" @default.
- W2898341738 hasPublicationYear "2019" @default.
- W2898341738 type Work @default.
- W2898341738 sameAs 2898341738 @default.
- W2898341738 citedByCount "9" @default.
- W2898341738 countsByYear W28983417382019 @default.
- W2898341738 countsByYear W28983417382020 @default.
- W2898341738 countsByYear W28983417382021 @default.
- W2898341738 countsByYear W28983417382022 @default.
- W2898341738 countsByYear W28983417382023 @default.
- W2898341738 crossrefType "journal-article" @default.
- W2898341738 hasAuthorship W2898341738A5005026076 @default.
- W2898341738 hasAuthorship W2898341738A5034357412 @default.
- W2898341738 hasAuthorship W2898341738A5037677450 @default.
- W2898341738 hasAuthorship W2898341738A5044959745 @default.
- W2898341738 hasAuthorship W2898341738A5065798206 @default.
- W2898341738 hasAuthorship W2898341738A5067600725 @default.
- W2898341738 hasAuthorship W2898341738A5087560192 @default.
- W2898341738 hasConcept C102392041 @default.
- W2898341738 hasConcept C111919701 @default.
- W2898341738 hasConcept C114614502 @default.
- W2898341738 hasConcept C119857082 @default.
- W2898341738 hasConcept C124101348 @default.
- W2898341738 hasConcept C153180895 @default.
- W2898341738 hasConcept C154945302 @default.
- W2898341738 hasConcept C155281189 @default.
- W2898341738 hasConcept C164226766 @default.
- W2898341738 hasConcept C202444582 @default.
- W2898341738 hasConcept C22789450 @default.
- W2898341738 hasConcept C2778751112 @default.
- W2898341738 hasConcept C2986737658 @default.
- W2898341738 hasConcept C33923547 @default.
- W2898341738 hasConcept C41008148 @default.
- W2898341738 hasConcept C48677424 @default.
- W2898341738 hasConceptScore W2898341738C102392041 @default.
- W2898341738 hasConceptScore W2898341738C111919701 @default.
- W2898341738 hasConceptScore W2898341738C114614502 @default.
- W2898341738 hasConceptScore W2898341738C119857082 @default.
- W2898341738 hasConceptScore W2898341738C124101348 @default.
- W2898341738 hasConceptScore W2898341738C153180895 @default.
- W2898341738 hasConceptScore W2898341738C154945302 @default.
- W2898341738 hasConceptScore W2898341738C155281189 @default.
- W2898341738 hasConceptScore W2898341738C164226766 @default.
- W2898341738 hasConceptScore W2898341738C202444582 @default.
- W2898341738 hasConceptScore W2898341738C22789450 @default.
- W2898341738 hasConceptScore W2898341738C2778751112 @default.
- W2898341738 hasConceptScore W2898341738C2986737658 @default.
- W2898341738 hasConceptScore W2898341738C33923547 @default.