Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898359605> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2898359605 endingPage "116" @default.
- W2898359605 startingPage "98" @default.
- W2898359605 abstract "Abstract Interior noise substantially influences the physiological and psychological sensations of passengers in pure electric vehicles (EVs). Numerous studies have examined the development of acoustic prediction models and acoustic metrics to evaluate EV interior sound quality. However, the existing studies have the following four deficiencies: (1) the interior noise of EVs was studied only on general roads, and few EV samples were tested; (2) the physical acoustical metrics and psychoacoustic metrics did not comprehensively reflect all the characteristics of the interior noise of EVs; (3) features added to the acoustic prediction models were manually extracted and selected and were highly dependent on prior knowledge of acoustic theory and experience; and (4) the most common acoustic prediction models used to evaluate interior noise have shallow architectures. To overcome these deficiencies, we introduce a novel intelligent acoustic model based on deep neural networks (DNNs) called the Laplacian score-deep belief network (LS-DBN). We used the LS-DBN to evaluate the sound quality of EV interior noise. To verify the effectiveness of the proposed method, the interior noises of ten EVs were recorded on eight different road surfaces and corresponding subjective evaluations were conducted. In addition, noise features were extracted adaptively using the LS-DBN, and adaptively extracted features and manually extracted features were compared. The performance of the LS-DBN was validated against a conventional DBN and a back-propagation neural network (BPNN). The results show that the proposed LS-DBN model is superior to the conventional DBN and BPNN in terms of accuracy and stability, and it is highly efficient. Thus, the LS-DBN can achieve good prediction results when evaluating the interior sound quality of EVs." @default.
- W2898359605 created "2018-11-02" @default.
- W2898359605 creator A5021450770 @default.
- W2898359605 creator A5025359893 @default.
- W2898359605 creator A5064596842 @default.
- W2898359605 creator A5076531731 @default.
- W2898359605 creator A5087063620 @default.
- W2898359605 date "2019-04-01" @default.
- W2898359605 modified "2023-10-12" @default.
- W2898359605 title "The development of a deep neural network and its application to evaluating the interior sound quality of pure electric vehicles" @default.
- W2898359605 cites W1493952566 @default.
- W2898359605 cites W1992654982 @default.
- W2898359605 cites W1994553610 @default.
- W2898359605 cites W2014395566 @default.
- W2898359605 cites W2029298355 @default.
- W2898359605 cites W2050159607 @default.
- W2898359605 cites W2051810271 @default.
- W2898359605 cites W2054934971 @default.
- W2898359605 cites W2060937572 @default.
- W2898359605 cites W2063922127 @default.
- W2898359605 cites W2089522589 @default.
- W2898359605 cites W2093866254 @default.
- W2898359605 cites W2100495367 @default.
- W2898359605 cites W2118286956 @default.
- W2898359605 cites W2162596025 @default.
- W2898359605 cites W2172097686 @default.
- W2898359605 cites W2257979135 @default.
- W2898359605 cites W2406059113 @default.
- W2898359605 cites W2462902279 @default.
- W2898359605 cites W2470416711 @default.
- W2898359605 cites W2489528756 @default.
- W2898359605 cites W2569744861 @default.
- W2898359605 cites W2613867098 @default.
- W2898359605 cites W2621113646 @default.
- W2898359605 cites W2729398852 @default.
- W2898359605 cites W2790715602 @default.
- W2898359605 cites W2793062918 @default.
- W2898359605 cites W945645259 @default.
- W2898359605 doi "https://doi.org/10.1016/j.ymssp.2018.09.035" @default.
- W2898359605 hasPublicationYear "2019" @default.
- W2898359605 type Work @default.
- W2898359605 sameAs 2898359605 @default.
- W2898359605 citedByCount "38" @default.
- W2898359605 countsByYear W28983596052019 @default.
- W2898359605 countsByYear W28983596052020 @default.
- W2898359605 countsByYear W28983596052021 @default.
- W2898359605 countsByYear W28983596052022 @default.
- W2898359605 countsByYear W28983596052023 @default.
- W2898359605 crossrefType "journal-article" @default.
- W2898359605 hasAuthorship W2898359605A5021450770 @default.
- W2898359605 hasAuthorship W2898359605A5025359893 @default.
- W2898359605 hasAuthorship W2898359605A5064596842 @default.
- W2898359605 hasAuthorship W2898359605A5076531731 @default.
- W2898359605 hasAuthorship W2898359605A5087063620 @default.
- W2898359605 hasConcept C121332964 @default.
- W2898359605 hasConcept C127413603 @default.
- W2898359605 hasConcept C154945302 @default.
- W2898359605 hasConcept C167310288 @default.
- W2898359605 hasConcept C203718221 @default.
- W2898359605 hasConcept C24890656 @default.
- W2898359605 hasConcept C2779530757 @default.
- W2898359605 hasConcept C28490314 @default.
- W2898359605 hasConcept C41008148 @default.
- W2898359605 hasConcept C50644808 @default.
- W2898359605 hasConcept C62520636 @default.
- W2898359605 hasConceptScore W2898359605C121332964 @default.
- W2898359605 hasConceptScore W2898359605C127413603 @default.
- W2898359605 hasConceptScore W2898359605C154945302 @default.
- W2898359605 hasConceptScore W2898359605C167310288 @default.
- W2898359605 hasConceptScore W2898359605C203718221 @default.
- W2898359605 hasConceptScore W2898359605C24890656 @default.
- W2898359605 hasConceptScore W2898359605C2779530757 @default.
- W2898359605 hasConceptScore W2898359605C28490314 @default.
- W2898359605 hasConceptScore W2898359605C41008148 @default.
- W2898359605 hasConceptScore W2898359605C50644808 @default.
- W2898359605 hasConceptScore W2898359605C62520636 @default.
- W2898359605 hasFunder F4320321543 @default.
- W2898359605 hasFunder F4320335353 @default.
- W2898359605 hasLocation W28983596051 @default.
- W2898359605 hasOpenAccess W2898359605 @default.
- W2898359605 hasPrimaryLocation W28983596051 @default.
- W2898359605 hasRelatedWork W1983256796 @default.
- W2898359605 hasRelatedWork W2017493561 @default.
- W2898359605 hasRelatedWork W2026762479 @default.
- W2898359605 hasRelatedWork W2056018092 @default.
- W2898359605 hasRelatedWork W2063014532 @default.
- W2898359605 hasRelatedWork W2090194571 @default.
- W2898359605 hasRelatedWork W2654001786 @default.
- W2898359605 hasRelatedWork W297666897 @default.
- W2898359605 hasRelatedWork W2981374714 @default.
- W2898359605 hasRelatedWork W3041639789 @default.
- W2898359605 hasVolume "120" @default.
- W2898359605 isParatext "false" @default.
- W2898359605 isRetracted "false" @default.
- W2898359605 magId "2898359605" @default.
- W2898359605 workType "article" @default.