Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898381749> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2898381749 endingPage "95" @default.
- W2898381749 startingPage "84" @default.
- W2898381749 abstract "Abstract Considering large WSNs and comparing data aggregation approaches in terms of scalability, robustness, completeness, and time/energy effectiveness, recent research has asserted the superiority of serial structure-free approaches over serial structure-based ones, and over both parallel structure-free and parallel structure-based techniques. But, in spite of the fact that serial structure-free approaches excel in large and medium-scale networks, their underlying path-construction algorithms are not optimal and can be improved by reducing the involved communications and further shortening the visiting path. To respond to this need, this paper presents Geometric Serial Search (GSS); a new serial structure-free algorithm specifically designed to efficiently gather information from large wireless resource-constrained networks. In addition to its completeness (i.e., visiting all nodes), collision-free nature, high scalability, energy/time efficiency, and robustness against topology changes (failures in links/nodes, …), the main advantage distinguishing GSS is that it considerably reduces communications and always approaches the optimal number of hops. More precisely, in GSS, no control packets or complex data structures are required, instead, one packet hops from node to node and explores the entire network. While gradually finding its way through the network, this packet interrogates nodes and collects their responses at the same time. The followed path is not established in advance, can stem from any node in the network, and requires only the one-hop neighborhood information of each traversed node to be gradually drawn. The obtained OMNeT++ simulation results presented in this paper demonstrate the efficiency of GSS and confirm all the previously cited claims." @default.
- W2898381749 created "2018-11-02" @default.
- W2898381749 creator A5012195474 @default.
- W2898381749 creator A5053213988 @default.
- W2898381749 creator A5070464735 @default.
- W2898381749 date "2018-11-01" @default.
- W2898381749 modified "2023-09-27" @default.
- W2898381749 title "Efficient information gathering from large wireless sensor networks" @default.
- W2898381749 cites W1989148235 @default.
- W2898381749 cites W1997115052 @default.
- W2898381749 cites W2038420319 @default.
- W2898381749 cites W2051470259 @default.
- W2898381749 cites W2104846640 @default.
- W2898381749 cites W2107376953 @default.
- W2898381749 cites W2108306501 @default.
- W2898381749 cites W2116066327 @default.
- W2898381749 cites W2126644064 @default.
- W2898381749 cites W2138576486 @default.
- W2898381749 cites W2139499282 @default.
- W2898381749 cites W2139587243 @default.
- W2898381749 cites W2140655807 @default.
- W2898381749 cites W2141788746 @default.
- W2898381749 cites W2143667229 @default.
- W2898381749 cites W2147841099 @default.
- W2898381749 cites W2151685478 @default.
- W2898381749 cites W2155723880 @default.
- W2898381749 cites W2159013099 @default.
- W2898381749 cites W2166067271 @default.
- W2898381749 cites W2170385829 @default.
- W2898381749 cites W2398437049 @default.
- W2898381749 cites W2506424319 @default.
- W2898381749 cites W2589056080 @default.
- W2898381749 cites W2768759593 @default.
- W2898381749 cites W4300170566 @default.
- W2898381749 cites W2036536880 @default.
- W2898381749 doi "https://doi.org/10.1016/j.comcom.2018.10.006" @default.
- W2898381749 hasPublicationYear "2018" @default.
- W2898381749 type Work @default.
- W2898381749 sameAs 2898381749 @default.
- W2898381749 citedByCount "6" @default.
- W2898381749 countsByYear W28983817492020 @default.
- W2898381749 countsByYear W28983817492021 @default.
- W2898381749 countsByYear W28983817492023 @default.
- W2898381749 crossrefType "journal-article" @default.
- W2898381749 hasAuthorship W2898381749A5012195474 @default.
- W2898381749 hasAuthorship W2898381749A5053213988 @default.
- W2898381749 hasAuthorship W2898381749A5070464735 @default.
- W2898381749 hasConcept C108037233 @default.
- W2898381749 hasConcept C24590314 @default.
- W2898381749 hasConcept C31258907 @default.
- W2898381749 hasConcept C41008148 @default.
- W2898381749 hasConcept C555944384 @default.
- W2898381749 hasConcept C76155785 @default.
- W2898381749 hasConceptScore W2898381749C108037233 @default.
- W2898381749 hasConceptScore W2898381749C24590314 @default.
- W2898381749 hasConceptScore W2898381749C31258907 @default.
- W2898381749 hasConceptScore W2898381749C41008148 @default.
- W2898381749 hasConceptScore W2898381749C555944384 @default.
- W2898381749 hasConceptScore W2898381749C76155785 @default.
- W2898381749 hasLocation W28983817491 @default.
- W2898381749 hasOpenAccess W2898381749 @default.
- W2898381749 hasPrimaryLocation W28983817491 @default.
- W2898381749 hasRelatedWork W1969993354 @default.
- W2898381749 hasRelatedWork W2020513309 @default.
- W2898381749 hasRelatedWork W2123174207 @default.
- W2898381749 hasRelatedWork W2374041023 @default.
- W2898381749 hasRelatedWork W2398544813 @default.
- W2898381749 hasRelatedWork W2512844215 @default.
- W2898381749 hasRelatedWork W2537178846 @default.
- W2898381749 hasRelatedWork W2601964555 @default.
- W2898381749 hasRelatedWork W2602139996 @default.
- W2898381749 hasRelatedWork W2607247987 @default.
- W2898381749 hasVolume "132" @default.
- W2898381749 isParatext "false" @default.
- W2898381749 isRetracted "false" @default.
- W2898381749 magId "2898381749" @default.
- W2898381749 workType "article" @default.