Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898408087> ?p ?o ?g. }
- W2898408087 abstract "Enhancing low resolution images via super-resolution or synthesis algorithms for cross-resolution face recognition has been well studied. Several image processing and machine learning paradigms have been explored for addressing the same. In this research, we propose Synthesis via Hierarchical Sparse Representation (SHSR) algorithm for synthesizing a high resolution face image from a low resolution input image. The proposed algorithm learns multilevel sparse representation for both high and low resolution gallery images, along with identity aware dictionaries and a transformation function between the two representations for face identification scenarios. With low resolution test data as input, a high resolution test image is synthesized using the identity aware dictionaries and transformation, which is then used for face recognition. The performance of the proposed SHSR algorithm is evaluated on four datasets, including one real world dataset. Experimental results and comparison with seven existing algorithms demonstrate the efficacy of the proposed algorithm in terms of both face identification and image quality measures." @default.
- W2898408087 created "2018-11-02" @default.
- W2898408087 creator A5011779957 @default.
- W2898408087 creator A5020310463 @default.
- W2898408087 creator A5050521702 @default.
- W2898408087 creator A5066262755 @default.
- W2898408087 creator A5084235091 @default.
- W2898408087 date "2018-06-01" @default.
- W2898408087 modified "2023-09-25" @default.
- W2898408087 title "Identity Aware Synthesis for Cross Resolution Face Recognition" @default.
- W2898408087 cites W1510601647 @default.
- W2898408087 cites W1885185971 @default.
- W2898408087 cites W1976496742 @default.
- W2898408087 cites W1982471090 @default.
- W2898408087 cites W1985436611 @default.
- W2898408087 cites W2005360016 @default.
- W2898408087 cites W2055492845 @default.
- W2898408087 cites W2057065563 @default.
- W2898408087 cites W2067023690 @default.
- W2898408087 cites W2083708558 @default.
- W2898408087 cites W2084658294 @default.
- W2898408087 cites W2096027770 @default.
- W2898408087 cites W2097269201 @default.
- W2898408087 cites W2099321050 @default.
- W2898408087 cites W2121058967 @default.
- W2898408087 cites W2140355387 @default.
- W2898408087 cites W2149669120 @default.
- W2898408087 cites W2172157973 @default.
- W2898408087 cites W2202656999 @default.
- W2898408087 cites W2295477204 @default.
- W2898408087 cites W2332698925 @default.
- W2898408087 cites W2508499722 @default.
- W2898408087 cites W2560042709 @default.
- W2898408087 cites W2780544323 @default.
- W2898408087 cites W2912990735 @default.
- W2898408087 cites W2963186101 @default.
- W2898408087 cites W2963470893 @default.
- W2898408087 cites W3097096317 @default.
- W2898408087 doi "https://doi.org/10.1109/cvprw.2018.00089" @default.
- W2898408087 hasPublicationYear "2018" @default.
- W2898408087 type Work @default.
- W2898408087 sameAs 2898408087 @default.
- W2898408087 citedByCount "20" @default.
- W2898408087 countsByYear W28984080872019 @default.
- W2898408087 countsByYear W28984080872020 @default.
- W2898408087 countsByYear W28984080872021 @default.
- W2898408087 countsByYear W28984080872022 @default.
- W2898408087 countsByYear W28984080872023 @default.
- W2898408087 crossrefType "proceedings-article" @default.
- W2898408087 hasAuthorship W2898408087A5011779957 @default.
- W2898408087 hasAuthorship W2898408087A5020310463 @default.
- W2898408087 hasAuthorship W2898408087A5050521702 @default.
- W2898408087 hasAuthorship W2898408087A5066262755 @default.
- W2898408087 hasAuthorship W2898408087A5084235091 @default.
- W2898408087 hasConcept C104317684 @default.
- W2898408087 hasConcept C115961682 @default.
- W2898408087 hasConcept C116834253 @default.
- W2898408087 hasConcept C121332964 @default.
- W2898408087 hasConcept C124066611 @default.
- W2898408087 hasConcept C127313418 @default.
- W2898408087 hasConcept C138268822 @default.
- W2898408087 hasConcept C144024400 @default.
- W2898408087 hasConcept C153180895 @default.
- W2898408087 hasConcept C154945302 @default.
- W2898408087 hasConcept C17744445 @default.
- W2898408087 hasConcept C185592680 @default.
- W2898408087 hasConcept C199539241 @default.
- W2898408087 hasConcept C204241405 @default.
- W2898408087 hasConcept C205372480 @default.
- W2898408087 hasConcept C24890656 @default.
- W2898408087 hasConcept C2776359362 @default.
- W2898408087 hasConcept C2778355321 @default.
- W2898408087 hasConcept C2779304628 @default.
- W2898408087 hasConcept C3019883945 @default.
- W2898408087 hasConcept C3020199158 @default.
- W2898408087 hasConcept C31510193 @default.
- W2898408087 hasConcept C31972630 @default.
- W2898408087 hasConcept C36289849 @default.
- W2898408087 hasConcept C41008148 @default.
- W2898408087 hasConcept C55493867 @default.
- W2898408087 hasConcept C59822182 @default.
- W2898408087 hasConcept C62649853 @default.
- W2898408087 hasConcept C86803240 @default.
- W2898408087 hasConcept C94625758 @default.
- W2898408087 hasConceptScore W2898408087C104317684 @default.
- W2898408087 hasConceptScore W2898408087C115961682 @default.
- W2898408087 hasConceptScore W2898408087C116834253 @default.
- W2898408087 hasConceptScore W2898408087C121332964 @default.
- W2898408087 hasConceptScore W2898408087C124066611 @default.
- W2898408087 hasConceptScore W2898408087C127313418 @default.
- W2898408087 hasConceptScore W2898408087C138268822 @default.
- W2898408087 hasConceptScore W2898408087C144024400 @default.
- W2898408087 hasConceptScore W2898408087C153180895 @default.
- W2898408087 hasConceptScore W2898408087C154945302 @default.
- W2898408087 hasConceptScore W2898408087C17744445 @default.
- W2898408087 hasConceptScore W2898408087C185592680 @default.
- W2898408087 hasConceptScore W2898408087C199539241 @default.
- W2898408087 hasConceptScore W2898408087C204241405 @default.
- W2898408087 hasConceptScore W2898408087C205372480 @default.
- W2898408087 hasConceptScore W2898408087C24890656 @default.