Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898434483> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2898434483 abstract "The increasing complexity of configuring cellular networks suggests that machine learning (ML) can effectively improve 5G technologies. Deep learning has proven successful in ML tasks such as speech processing and computational vision, with a performance that scales with the amount of available data. The lack of large datasets inhibits the flourish of deep learning applications in wireless communications. This paper presents a methodology that combines a vehicle traffic simulator with a ray-tracing simulator, to generate channel realizations representing 5G scenarios with mobility of both transceivers and objects. The paper then describes a specific dataset for investigating beam-selection techniques on vehicle-to-infrastructure using millimeter waves. Experiments using deep learning in classification, regression and reinforcement learning problems illustrate the use of datasets generated with the proposed methodology." @default.
- W2898434483 created "2018-11-02" @default.
- W2898434483 creator A5022322172 @default.
- W2898434483 creator A5029812222 @default.
- W2898434483 creator A5056278281 @default.
- W2898434483 creator A5056967606 @default.
- W2898434483 creator A5062442180 @default.
- W2898434483 date "2018-02-01" @default.
- W2898434483 modified "2023-10-18" @default.
- W2898434483 title "5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning" @default.
- W2898434483 cites W1954351671 @default.
- W2898434483 cites W2014161185 @default.
- W2898434483 cites W2024713977 @default.
- W2898434483 cites W2064747658 @default.
- W2898434483 cites W2094655360 @default.
- W2898434483 cites W2159256278 @default.
- W2898434483 cites W2195693430 @default.
- W2898434483 cites W2437823381 @default.
- W2898434483 cites W2540923637 @default.
- W2898434483 cites W2562947506 @default.
- W2898434483 cites W2563817129 @default.
- W2898434483 cites W2599985822 @default.
- W2898434483 cites W2603396821 @default.
- W2898434483 cites W2605261875 @default.
- W2898434483 cites W2611484353 @default.
- W2898434483 cites W2621037946 @default.
- W2898434483 cites W2728471704 @default.
- W2898434483 cites W2734408173 @default.
- W2898434483 cites W2735793369 @default.
- W2898434483 cites W2741401130 @default.
- W2898434483 cites W2742899112 @default.
- W2898434483 cites W2761862361 @default.
- W2898434483 cites W2919115771 @default.
- W2898434483 cites W2962819920 @default.
- W2898434483 cites W2962944637 @default.
- W2898434483 cites W2963555070 @default.
- W2898434483 cites W2963889719 @default.
- W2898434483 cites W2964198810 @default.
- W2898434483 cites W2964313794 @default.
- W2898434483 doi "https://doi.org/10.1109/ita.2018.8503086" @default.
- W2898434483 hasPublicationYear "2018" @default.
- W2898434483 type Work @default.
- W2898434483 sameAs 2898434483 @default.
- W2898434483 citedByCount "139" @default.
- W2898434483 countsByYear W28984344832017 @default.
- W2898434483 countsByYear W28984344832018 @default.
- W2898434483 countsByYear W28984344832019 @default.
- W2898434483 countsByYear W28984344832020 @default.
- W2898434483 countsByYear W28984344832021 @default.
- W2898434483 countsByYear W28984344832022 @default.
- W2898434483 countsByYear W28984344832023 @default.
- W2898434483 crossrefType "proceedings-article" @default.
- W2898434483 hasAuthorship W2898434483A5022322172 @default.
- W2898434483 hasAuthorship W2898434483A5029812222 @default.
- W2898434483 hasAuthorship W2898434483A5056278281 @default.
- W2898434483 hasAuthorship W2898434483A5056967606 @default.
- W2898434483 hasAuthorship W2898434483A5062442180 @default.
- W2898434483 hasBestOaLocation W28984344832 @default.
- W2898434483 hasConcept C108583219 @default.
- W2898434483 hasConcept C111919701 @default.
- W2898434483 hasConcept C119857082 @default.
- W2898434483 hasConcept C127162648 @default.
- W2898434483 hasConcept C138673069 @default.
- W2898434483 hasConcept C154945302 @default.
- W2898434483 hasConcept C207987634 @default.
- W2898434483 hasConcept C41008148 @default.
- W2898434483 hasConcept C555944384 @default.
- W2898434483 hasConcept C76155785 @default.
- W2898434483 hasConcept C81917197 @default.
- W2898434483 hasConcept C97541855 @default.
- W2898434483 hasConceptScore W2898434483C108583219 @default.
- W2898434483 hasConceptScore W2898434483C111919701 @default.
- W2898434483 hasConceptScore W2898434483C119857082 @default.
- W2898434483 hasConceptScore W2898434483C127162648 @default.
- W2898434483 hasConceptScore W2898434483C138673069 @default.
- W2898434483 hasConceptScore W2898434483C154945302 @default.
- W2898434483 hasConceptScore W2898434483C207987634 @default.
- W2898434483 hasConceptScore W2898434483C41008148 @default.
- W2898434483 hasConceptScore W2898434483C555944384 @default.
- W2898434483 hasConceptScore W2898434483C76155785 @default.
- W2898434483 hasConceptScore W2898434483C81917197 @default.
- W2898434483 hasConceptScore W2898434483C97541855 @default.
- W2898434483 hasLocation W28984344831 @default.
- W2898434483 hasLocation W28984344832 @default.
- W2898434483 hasOpenAccess W2898434483 @default.
- W2898434483 hasPrimaryLocation W28984344831 @default.
- W2898434483 hasRelatedWork W3014300295 @default.
- W2898434483 hasRelatedWork W3164822677 @default.
- W2898434483 hasRelatedWork W4223943233 @default.
- W2898434483 hasRelatedWork W4225161397 @default.
- W2898434483 hasRelatedWork W4250304930 @default.
- W2898434483 hasRelatedWork W4312200629 @default.
- W2898434483 hasRelatedWork W4360585206 @default.
- W2898434483 hasRelatedWork W4364306694 @default.
- W2898434483 hasRelatedWork W4380075502 @default.
- W2898434483 hasRelatedWork W4380086463 @default.
- W2898434483 isParatext "false" @default.
- W2898434483 isRetracted "false" @default.
- W2898434483 magId "2898434483" @default.
- W2898434483 workType "article" @default.