Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898493904> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2898493904 abstract "The placenta is the key organ of maternal–fetal interactions, where nutrient, oxygen, and waste transfer take place. Differences in the morphology of the placental chorionic surface vascular network (PCSVN) have been associated with developmental disorders such as autism, hinting that the PCSVN could potentially serve as a biomarker for early diagnosis and treatment of autism. Studying PCSVN features in large cohorts requires a reliable and automated mechanism to extract the vascular networks. This paper presents two distinct methods for PCSVN enhancement and extraction. Our first algorithm, which builds upon a directional multiscale mathematical framework based on a combination of shearlets and Laplacian eigenmaps, is able to intensify the appearance of vessels with high success in high-contrast images such as those produced in CT scans. Our second algorithm, which applies a conditional generative adversarial neural network (cGAN), was trained to simulate a human-traced PCSVN given a digital photograph of the placental chorionic surface. This method surpasses any existing automated PCSVN extraction methods reported on digital photographs of placentas. We hypothesize that a suitable combination of the two methods could further improve PCSVN extraction results and should be studied in the future." @default.
- W2898493904 created "2018-11-02" @default.
- W2898493904 creator A5005152508 @default.
- W2898493904 creator A5010854964 @default.
- W2898493904 creator A5018047197 @default.
- W2898493904 creator A5020582091 @default.
- W2898493904 creator A5038155688 @default.
- W2898493904 creator A5043792020 @default.
- W2898493904 creator A5051804938 @default.
- W2898493904 creator A5070476953 @default.
- W2898493904 creator A5075149803 @default.
- W2898493904 date "2018-01-01" @default.
- W2898493904 modified "2023-10-18" @default.
- W2898493904 title "Placental Vessel Extraction with Shearlets, Laplacian Eigenmaps, and a Conditional Generative Adversarial Network" @default.
- W2898493904 cites W1597778583 @default.
- W2898493904 cites W1742512077 @default.
- W2898493904 cites W1965908058 @default.
- W2898493904 cites W2004297745 @default.
- W2898493904 cites W2097308346 @default.
- W2898493904 cites W2098914003 @default.
- W2898493904 cites W2099436735 @default.
- W2898493904 cites W2103504761 @default.
- W2898493904 cites W2115528090 @default.
- W2898493904 cites W2129534965 @default.
- W2898493904 cites W2132984323 @default.
- W2898493904 cites W2137155471 @default.
- W2898493904 cites W2138584058 @default.
- W2898493904 cites W2164516419 @default.
- W2898493904 cites W2216023838 @default.
- W2898493904 cites W2281288657 @default.
- W2898493904 cites W2312435147 @default.
- W2898493904 cites W2596453284 @default.
- W2898493904 cites W2773594630 @default.
- W2898493904 cites W2797199786 @default.
- W2898493904 cites W2963073614 @default.
- W2898493904 cites W2053143874 @default.
- W2898493904 doi "https://doi.org/10.1007/978-3-319-98083-6_8" @default.
- W2898493904 hasPublicationYear "2018" @default.
- W2898493904 type Work @default.
- W2898493904 sameAs 2898493904 @default.
- W2898493904 citedByCount "1" @default.
- W2898493904 countsByYear W28984939042020 @default.
- W2898493904 crossrefType "book-chapter" @default.
- W2898493904 hasAuthorship W2898493904A5005152508 @default.
- W2898493904 hasAuthorship W2898493904A5010854964 @default.
- W2898493904 hasAuthorship W2898493904A5018047197 @default.
- W2898493904 hasAuthorship W2898493904A5020582091 @default.
- W2898493904 hasAuthorship W2898493904A5038155688 @default.
- W2898493904 hasAuthorship W2898493904A5043792020 @default.
- W2898493904 hasAuthorship W2898493904A5051804938 @default.
- W2898493904 hasAuthorship W2898493904A5070476953 @default.
- W2898493904 hasAuthorship W2898493904A5075149803 @default.
- W2898493904 hasConcept C115961682 @default.
- W2898493904 hasConcept C153180895 @default.
- W2898493904 hasConcept C154945302 @default.
- W2898493904 hasConcept C31972630 @default.
- W2898493904 hasConcept C39890363 @default.
- W2898493904 hasConcept C41008148 @default.
- W2898493904 hasConcept C67795661 @default.
- W2898493904 hasConceptScore W2898493904C115961682 @default.
- W2898493904 hasConceptScore W2898493904C153180895 @default.
- W2898493904 hasConceptScore W2898493904C154945302 @default.
- W2898493904 hasConceptScore W2898493904C31972630 @default.
- W2898493904 hasConceptScore W2898493904C39890363 @default.
- W2898493904 hasConceptScore W2898493904C41008148 @default.
- W2898493904 hasConceptScore W2898493904C67795661 @default.
- W2898493904 hasLocation W28984939041 @default.
- W2898493904 hasOpenAccess W2898493904 @default.
- W2898493904 hasPrimaryLocation W28984939041 @default.
- W2898493904 hasRelatedWork W2737485754 @default.
- W2898493904 hasRelatedWork W2805256115 @default.
- W2898493904 hasRelatedWork W2911485191 @default.
- W2898493904 hasRelatedWork W2951312444 @default.
- W2898493904 hasRelatedWork W2979883679 @default.
- W2898493904 hasRelatedWork W2999749877 @default.
- W2898493904 hasRelatedWork W3089394036 @default.
- W2898493904 hasRelatedWork W3157307833 @default.
- W2898493904 isParatext "false" @default.
- W2898493904 isRetracted "false" @default.
- W2898493904 magId "2898493904" @default.
- W2898493904 workType "book-chapter" @default.