Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898498213> ?p ?o ?g. }
- W2898498213 endingPage "1690" @default.
- W2898498213 startingPage "1690" @default.
- W2898498213 abstract "In recent years, weeds have been responsible for most agricultural yield losses. To deal with this threat, farmers resort to spraying the fields uniformly with herbicides. This method not only requires huge quantities of herbicides but impacts the environment and human health. One way to reduce the cost and environmental impact is to allocate the right doses of herbicide to the right place and at the right time (precision agriculture). Nowadays, unmanned aerial vehicles (UAVs) are becoming an interesting acquisition system for weed localization and management due to their ability to obtain images of the entire agricultural field with a very high spatial resolution and at a low cost. However, despite significant advances in UAV acquisition systems, the automatic detection of weeds remains a challenging problem because of their strong similarity to the crops. Recently, a deep learning approach has shown impressive results in different complex classification problems. However, this approach needs a certain amount of training data, and creating large agricultural datasets with pixel-level annotations by an expert is an extremely time-consuming task. In this paper, we propose a novel fully automatic learning method using convolutional neuronal networks (CNNs) with an unsupervised training dataset collection for weed detection from UAV images. The proposed method comprises three main phases. First, we automatically detect the crop rows and use them to identify the inter-row weeds. In the second phase, inter-row weeds are used to constitute the training dataset. Finally, we perform CNNs on this dataset to build a model able to detect the crop and the weeds in the images. The results obtained are comparable to those of traditional supervised training data labeling, with differences in accuracy of 1.5% in the spinach field and 6% in the bean field." @default.
- W2898498213 created "2018-11-02" @default.
- W2898498213 creator A5049138414 @default.
- W2898498213 creator A5061197809 @default.
- W2898498213 creator A5068195100 @default.
- W2898498213 date "2018-10-26" @default.
- W2898498213 modified "2023-10-11" @default.
- W2898498213 title "Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images" @default.
- W2898498213 cites W1561161063 @default.
- W2898498213 cites W1600079720 @default.
- W2898498213 cites W1863411004 @default.
- W2898498213 cites W1968930126 @default.
- W2898498213 cites W1973788747 @default.
- W2898498213 cites W1976977979 @default.
- W2898498213 cites W1984792953 @default.
- W2898498213 cites W1995626413 @default.
- W2898498213 cites W2035759078 @default.
- W2898498213 cites W2038782607 @default.
- W2898498213 cites W2041137640 @default.
- W2898498213 cites W2044465660 @default.
- W2898498213 cites W2056132907 @default.
- W2898498213 cites W2063623478 @default.
- W2898498213 cites W2074464158 @default.
- W2898498213 cites W2080091930 @default.
- W2898498213 cites W2081286693 @default.
- W2898498213 cites W2086522252 @default.
- W2898498213 cites W2088487511 @default.
- W2898498213 cites W2088897029 @default.
- W2898498213 cites W2089040011 @default.
- W2898498213 cites W2091745481 @default.
- W2898498213 cites W2112796928 @default.
- W2898498213 cites W2117438495 @default.
- W2898498213 cites W2118246710 @default.
- W2898498213 cites W2127879788 @default.
- W2898498213 cites W2127943252 @default.
- W2898498213 cites W2133059825 @default.
- W2898498213 cites W2161969291 @default.
- W2898498213 cites W2163450852 @default.
- W2898498213 cites W2165698076 @default.
- W2898498213 cites W2171181782 @default.
- W2898498213 cites W2178852775 @default.
- W2898498213 cites W2194775991 @default.
- W2898498213 cites W2243003515 @default.
- W2898498213 cites W2394911398 @default.
- W2898498213 cites W2555858342 @default.
- W2898498213 cites W2564734427 @default.
- W2898498213 cites W2592893779 @default.
- W2898498213 cites W2626946189 @default.
- W2898498213 cites W2737250466 @default.
- W2898498213 cites W2752192487 @default.
- W2898498213 cites W2752788177 @default.
- W2898498213 cites W2767767563 @default.
- W2898498213 cites W2781967587 @default.
- W2898498213 cites W2782347622 @default.
- W2898498213 cites W2786598467 @default.
- W2898498213 cites W2790858865 @default.
- W2898498213 cites W2790979755 @default.
- W2898498213 cites W2793809663 @default.
- W2898498213 cites W2803969185 @default.
- W2898498213 cites W2911964244 @default.
- W2898498213 cites W4239510810 @default.
- W2898498213 cites W2070838085 @default.
- W2898498213 doi "https://doi.org/10.3390/rs10111690" @default.
- W2898498213 hasPublicationYear "2018" @default.
- W2898498213 type Work @default.
- W2898498213 sameAs 2898498213 @default.
- W2898498213 citedByCount "154" @default.
- W2898498213 countsByYear W28984982132019 @default.
- W2898498213 countsByYear W28984982132020 @default.
- W2898498213 countsByYear W28984982132021 @default.
- W2898498213 countsByYear W28984982132022 @default.
- W2898498213 countsByYear W28984982132023 @default.
- W2898498213 crossrefType "journal-article" @default.
- W2898498213 hasAuthorship W2898498213A5049138414 @default.
- W2898498213 hasAuthorship W2898498213A5061197809 @default.
- W2898498213 hasAuthorship W2898498213A5068195100 @default.
- W2898498213 hasBestOaLocation W28984982131 @default.
- W2898498213 hasConcept C108583219 @default.
- W2898498213 hasConcept C118518473 @default.
- W2898498213 hasConcept C119857082 @default.
- W2898498213 hasConcept C120217122 @default.
- W2898498213 hasConcept C153180895 @default.
- W2898498213 hasConcept C154945302 @default.
- W2898498213 hasConcept C162324750 @default.
- W2898498213 hasConcept C187736073 @default.
- W2898498213 hasConcept C18903297 @default.
- W2898498213 hasConcept C202444582 @default.
- W2898498213 hasConcept C2775891814 @default.
- W2898498213 hasConcept C2780451532 @default.
- W2898498213 hasConcept C33923547 @default.
- W2898498213 hasConcept C41008148 @default.
- W2898498213 hasConcept C6557445 @default.
- W2898498213 hasConcept C86803240 @default.
- W2898498213 hasConcept C9652623 @default.
- W2898498213 hasConceptScore W2898498213C108583219 @default.
- W2898498213 hasConceptScore W2898498213C118518473 @default.
- W2898498213 hasConceptScore W2898498213C119857082 @default.
- W2898498213 hasConceptScore W2898498213C120217122 @default.