Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898532775> ?p ?o ?g. }
- W2898532775 abstract "Abstract Spatial capture–recapture models can produce unbiased estimates of population density, but sparse detection data often plague studies of social and territorial carnivores. Integrating multiple types of detection data can improve estimation of the spatial scale parameter (σ), activity center locations, and density. Noninvasive genetic sampling is effective for detecting carnivores, but social structure and territoriality could cause differential detectability among population cohorts for different detection methods. Using three observation models, we evaluated the integration of genetic detection data from noninvasive hair and scat sampling of the social and territorial coyote ( Canis latrans ). Although precision of estimated density was improved, particularly if sharing σ between detection methods was appropriate, posterior probabilities of σ and posterior predictive checks supported different σ for hair and scat observation models. The resulting spatial capture–recapture model described a scenario in which scat‐detected individuals lived on and around scat transects, whereas hair‐detected individuals had larger σ and mostly lived off of the detector array, leaving hair but not scat samples. A more supported interpretation is that individual heterogeneity in baseline detection rates (λ 0 ) was inconsistent between detection methods, such that each method disproportionately detected different population cohorts. These findings can be attributed to the sociality and territoriality of canids: Residents may be more likely to strategically mark territories via defecation (scat deposition), and transients may be more likely to exhibit rubbing (hair deposition) to increase mate attraction. Although this suggests that reliance on only one detection method may underestimate population density, integrating multiple sources of genetic detection data may be problematic for social and territorial carnivores. These data are typically sparse, modeling individual heterogeneity in λ 0 and/or σ with sparse data is difficult, and positive bias can be introduced in density estimates if individual heterogeneity in detection parameters that is inconsistent between detection methods is not appropriately modeled. Previous suggestions for assessing parameter consistency of σ between detection methods using Bayesian model selection algorithms could be confounded by individual heterogeneity in λ 0 in noninvasive detection data. We demonstrate the usefulness of augmenting those approaches with calibrated posterior predictive checks and plots of the posterior density of activity centers for key individuals." @default.
- W2898532775 created "2018-11-02" @default.
- W2898532775 creator A5019902701 @default.
- W2898532775 creator A5077999117 @default.
- W2898532775 creator A5085405066 @default.
- W2898532775 creator A5088080829 @default.
- W2898532775 creator A5089740543 @default.
- W2898532775 date "2018-10-01" @default.
- W2898532775 modified "2023-10-12" @default.
- W2898532775 title "Integrating multiple genetic detection methods to estimate population density of social and territorial carnivores" @default.
- W2898532775 cites W1513618424 @default.
- W2898532775 cites W1852173575 @default.
- W2898532775 cites W1934187453 @default.
- W2898532775 cites W1979575207 @default.
- W2898532775 cites W1981708922 @default.
- W2898532775 cites W1983071921 @default.
- W2898532775 cites W1984126792 @default.
- W2898532775 cites W1991291766 @default.
- W2898532775 cites W2002793943 @default.
- W2898532775 cites W2011400798 @default.
- W2898532775 cites W2017062126 @default.
- W2898532775 cites W2030895949 @default.
- W2898532775 cites W2031382613 @default.
- W2898532775 cites W2031914648 @default.
- W2898532775 cites W2034134936 @default.
- W2898532775 cites W2034427376 @default.
- W2898532775 cites W2034485231 @default.
- W2898532775 cites W2039369790 @default.
- W2898532775 cites W2045551282 @default.
- W2898532775 cites W2045959057 @default.
- W2898532775 cites W2057857278 @default.
- W2898532775 cites W2062290229 @default.
- W2898532775 cites W2064822420 @default.
- W2898532775 cites W2065788615 @default.
- W2898532775 cites W2072484216 @default.
- W2898532775 cites W2074544442 @default.
- W2898532775 cites W2077563755 @default.
- W2898532775 cites W2088737905 @default.
- W2898532775 cites W2092075920 @default.
- W2898532775 cites W2093068987 @default.
- W2898532775 cites W2113285629 @default.
- W2898532775 cites W2117695983 @default.
- W2898532775 cites W2123231166 @default.
- W2898532775 cites W2127396309 @default.
- W2898532775 cites W2144471804 @default.
- W2898532775 cites W2151431413 @default.
- W2898532775 cites W2152228551 @default.
- W2898532775 cites W2155404769 @default.
- W2898532775 cites W2161621771 @default.
- W2898532775 cites W2172464729 @default.
- W2898532775 cites W2175294688 @default.
- W2898532775 cites W2177540592 @default.
- W2898532775 cites W2182231088 @default.
- W2898532775 cites W2288714058 @default.
- W2898532775 cites W2342720238 @default.
- W2898532775 cites W2506962116 @default.
- W2898532775 cites W2516104307 @default.
- W2898532775 cites W2554038636 @default.
- W2898532775 cites W2563799170 @default.
- W2898532775 cites W2616462076 @default.
- W2898532775 cites W2714447309 @default.
- W2898532775 cites W2737143330 @default.
- W2898532775 cites W2761552372 @default.
- W2898532775 cites W2797838290 @default.
- W2898532775 cites W2952979231 @default.
- W2898532775 cites W4240968124 @default.
- W2898532775 cites W4242285902 @default.
- W2898532775 cites W4252826678 @default.
- W2898532775 doi "https://doi.org/10.1002/ecs2.2479" @default.
- W2898532775 hasPublicationYear "2018" @default.
- W2898532775 type Work @default.
- W2898532775 sameAs 2898532775 @default.
- W2898532775 citedByCount "13" @default.
- W2898532775 countsByYear W28985327752018 @default.
- W2898532775 countsByYear W28985327752020 @default.
- W2898532775 countsByYear W28985327752021 @default.
- W2898532775 countsByYear W28985327752022 @default.
- W2898532775 countsByYear W28985327752023 @default.
- W2898532775 crossrefType "journal-article" @default.
- W2898532775 hasAuthorship W2898532775A5019902701 @default.
- W2898532775 hasAuthorship W2898532775A5077999117 @default.
- W2898532775 hasAuthorship W2898532775A5085405066 @default.
- W2898532775 hasAuthorship W2898532775A5088080829 @default.
- W2898532775 hasAuthorship W2898532775A5089740543 @default.
- W2898532775 hasBestOaLocation W28985327751 @default.
- W2898532775 hasConcept C106131492 @default.
- W2898532775 hasConcept C140779682 @default.
- W2898532775 hasConcept C144024400 @default.
- W2898532775 hasConcept C149923435 @default.
- W2898532775 hasConcept C18903297 @default.
- W2898532775 hasConcept C199733313 @default.
- W2898532775 hasConcept C205649164 @default.
- W2898532775 hasConcept C2908647359 @default.
- W2898532775 hasConcept C31972630 @default.
- W2898532775 hasConcept C36528806 @default.
- W2898532775 hasConcept C41008148 @default.
- W2898532775 hasConcept C58640448 @default.
- W2898532775 hasConcept C86803240 @default.
- W2898532775 hasConcept C90805937 @default.
- W2898532775 hasConceptScore W2898532775C106131492 @default.