Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898569419> ?p ?o ?g. }
- W2898569419 abstract "The discovery of early, non-invasive biomarkers for the identification of preclinical” or “pre-symptomatic” Alzheimer’s disease and other dementias is a key issue, especially for research purposes, the design of preventive clinical trials, and drafting population-based health care policies. Complex behaviors are natural candidates for this. In particular, recent studies have suggested that speech alterations might be one of the earliest signs of cognitive decline, frequently noticeable years before other cognitive deficits become apparent. Traditional neuropsychological language tests provide ambiguous results in this contest. In contrast, the analysis of spoken language productions by Natural Language Processing (NLP) techniques can ecologically pinpoint language modifications in potential patients. This interdisciplinary study aimed at using NLP to identify early linguistic signs of cognitive decline in a population of elderly individuals. We enrolled 96 participants (age range 50-75): 48 healthy controls and 48 impaired participants: 16 participants with single domain amnestic Mild Cognitive Impairment (a-MCI), 16 with multiple domain MCI (md-MCI) and 16 with early Dementia (eD). Each subject underwent a brief neuropsychological screening composed by MMSE, MoCA, GPCog, CDT and verbal fluency (phonemic and semantic). The spontaneous speech during three tasks (explaining a complex picture, a typical working day and recalling a last remembered dream) was then recorded, transcribed and annotated at various linguistic levels. A multidimensional parameter computation was performed by a quantitative analysis of spoken texts, computing rhythmic, acoustic, lexical, morpho-syntactic and syntactic features. Neuropsychological tests showed significant differences between controls and md-MCI, and between controls and eD participants; MoCA, phonemic fluency and GPCog discriminated between controls and a-MCI, while MMSE, CDT and semantic fluency did not differentiate between the two groups. In the linguistic experiments, a number of features regarding lexical, acoustic and syntactic aspects were significant (non-parametric statistical analysis) in differentiating between all the considered subject groups. Linguistic features of spontaneous speech transcribed and analyzed by NLP techniques show significant differences between controls and pathological states and seems to be a promising approach for the identification of preclinical stages of dementia. Long duration follow-up studies are needed to confirm this assumption." @default.
- W2898569419 created "2018-11-02" @default.
- W2898569419 creator A5004973481 @default.
- W2898569419 creator A5021304637 @default.
- W2898569419 creator A5023384307 @default.
- W2898569419 creator A5043014638 @default.
- W2898569419 creator A5045522509 @default.
- W2898569419 creator A5080820519 @default.
- W2898569419 date "2018-11-13" @default.
- W2898569419 modified "2023-09-30" @default.
- W2898569419 title "Speech Analysis by Natural Language Processing Techniques: A Possible Tool for Very Early Detection of Cognitive Decline?" @default.
- W2898569419 cites W1502396013 @default.
- W2898569419 cites W1574405090 @default.
- W2898569419 cites W1833523444 @default.
- W2898569419 cites W1853705225 @default.
- W2898569419 cites W1869114031 @default.
- W2898569419 cites W1963487177 @default.
- W2898569419 cites W1965272725 @default.
- W2898569419 cites W1968634965 @default.
- W2898569419 cites W1983421775 @default.
- W2898569419 cites W1988568308 @default.
- W2898569419 cites W1991714215 @default.
- W2898569419 cites W1994244061 @default.
- W2898569419 cites W1994871153 @default.
- W2898569419 cites W1997428570 @default.
- W2898569419 cites W1997994949 @default.
- W2898569419 cites W2001186641 @default.
- W2898569419 cites W2002222130 @default.
- W2898569419 cites W2005978637 @default.
- W2898569419 cites W2010681077 @default.
- W2898569419 cites W2013349363 @default.
- W2898569419 cites W2017692478 @default.
- W2898569419 cites W2018025881 @default.
- W2898569419 cites W2021720310 @default.
- W2898569419 cites W2024924018 @default.
- W2898569419 cites W2028436804 @default.
- W2898569419 cites W2034664933 @default.
- W2898569419 cites W2047509901 @default.
- W2898569419 cites W2048505725 @default.
- W2898569419 cites W2051737015 @default.
- W2898569419 cites W2052557275 @default.
- W2898569419 cites W2055649795 @default.
- W2898569419 cites W2056570371 @default.
- W2898569419 cites W2058044289 @default.
- W2898569419 cites W2058161128 @default.
- W2898569419 cites W2061297199 @default.
- W2898569419 cites W2061720981 @default.
- W2898569419 cites W2069883761 @default.
- W2898569419 cites W2071099820 @default.
- W2898569419 cites W2077010120 @default.
- W2898569419 cites W2081686552 @default.
- W2898569419 cites W2089109585 @default.
- W2898569419 cites W2091871696 @default.
- W2898569419 cites W2092932101 @default.
- W2898569419 cites W2097726390 @default.
- W2898569419 cites W2112224561 @default.
- W2898569419 cites W2115017507 @default.
- W2898569419 cites W2116709840 @default.
- W2898569419 cites W2117266170 @default.
- W2898569419 cites W2118816516 @default.
- W2898569419 cites W2123819840 @default.
- W2898569419 cites W2125887218 @default.
- W2898569419 cites W2135190171 @default.
- W2898569419 cites W2136914353 @default.
- W2898569419 cites W2141931002 @default.
- W2898569419 cites W2147760023 @default.
- W2898569419 cites W2151989011 @default.
- W2898569419 cites W2158516192 @default.
- W2898569419 cites W2232964048 @default.
- W2898569419 cites W2280004449 @default.
- W2898569419 cites W2329336071 @default.
- W2898569419 cites W2515213528 @default.
- W2898569419 cites W2520369846 @default.
- W2898569419 cites W2528666543 @default.
- W2898569419 cites W2528703047 @default.
- W2898569419 cites W2529119253 @default.
- W2898569419 cites W2530098356 @default.
- W2898569419 cites W2582524520 @default.
- W2898569419 cites W2586242021 @default.
- W2898569419 cites W2625796101 @default.
- W2898569419 cites W2758611784 @default.
- W2898569419 cites W2790944889 @default.
- W2898569419 cites W2793025438 @default.
- W2898569419 cites W2793398224 @default.
- W2898569419 cites W4239915055 @default.
- W2898569419 cites W50329673 @default.
- W2898569419 doi "https://doi.org/10.3389/fnagi.2018.00369" @default.
- W2898569419 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6243042" @default.
- W2898569419 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30483116" @default.
- W2898569419 hasPublicationYear "2018" @default.
- W2898569419 type Work @default.
- W2898569419 sameAs 2898569419 @default.
- W2898569419 citedByCount "78" @default.
- W2898569419 countsByYear W28985694192019 @default.
- W2898569419 countsByYear W28985694192020 @default.
- W2898569419 countsByYear W28985694192021 @default.
- W2898569419 countsByYear W28985694192022 @default.
- W2898569419 countsByYear W28985694192023 @default.
- W2898569419 crossrefType "journal-article" @default.
- W2898569419 hasAuthorship W2898569419A5004973481 @default.