Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898716827> ?p ?o ?g. }
- W2898716827 endingPage "14327" @default.
- W2898716827 startingPage "14317" @default.
- W2898716827 abstract "Recently, it was reported that using CO2 as a flotation gas increases the flotation of auriferous pyrite from high carbonate gold ores of the Carlin Trend. In this regard, the influence of CO2 on bubble attachment at fresh pyrite surfaces was measured in the absence of collector using an induction timer, and it was found that nitrogen bubble attachment time was significantly reduced from 30 ms to less than 10 ms in CO2 saturated solutions. Details of CO2 bubble attachment at a fresh pyrite surface have been examined by atomic force microscopy (AFM) measurements and molecular dynamics (MD) simulations, and the results used to describe the subsequent attachment of a N2 bubble. As found from MD simulations, unlike the attached N2 bubble, which is stable and has a contact angle of about 90°, the CO2 bubble attaches, and spreads, wetting the fresh pyrite surface and forming a multilayer of CO2 molecules, corresponding to a contact angle of almost 180°. These MDS results are complemented by in situ AFM images, which show that, after attachment, CO2 nano-/microbubbles spread to form pancake bubbles at the fresh pyrite surface. In summary, it seems that CO2 bubbles have a propensity to spread, and whether CO2 exists as layers of CO2 molecules (gas pancakes) or as nano-/microbubbles, their presence at the fresh pyrite surface subsequently facilitates film rupture and attachment of millimeter N2 bubbles and, in this way, improves the flotation of pyrite." @default.
- W2898716827 created "2018-11-09" @default.
- W2898716827 creator A5000041263 @default.
- W2898716827 creator A5000269994 @default.
- W2898716827 creator A5036046334 @default.
- W2898716827 creator A5069636422 @default.
- W2898716827 date "2018-10-29" @default.
- W2898716827 modified "2023-10-01" @default.
- W2898716827 title "Attachment, Coalescence, and Spreading of Carbon Dioxide Nanobubbles at Pyrite Surfaces" @default.
- W2898716827 cites W1519519326 @default.
- W2898716827 cites W1965004647 @default.
- W2898716827 cites W1966668684 @default.
- W2898716827 cites W1969714516 @default.
- W2898716827 cites W1979439152 @default.
- W2898716827 cites W1981368803 @default.
- W2898716827 cites W1982211461 @default.
- W2898716827 cites W1990038712 @default.
- W2898716827 cites W1993159505 @default.
- W2898716827 cites W1994781443 @default.
- W2898716827 cites W1996342614 @default.
- W2898716827 cites W2001600949 @default.
- W2898716827 cites W2004682463 @default.
- W2898716827 cites W2012429780 @default.
- W2898716827 cites W2014041984 @default.
- W2898716827 cites W2017935265 @default.
- W2898716827 cites W2018125686 @default.
- W2898716827 cites W2019254524 @default.
- W2898716827 cites W2019946531 @default.
- W2898716827 cites W2022300686 @default.
- W2898716827 cites W2023164122 @default.
- W2898716827 cites W2023250771 @default.
- W2898716827 cites W2030018567 @default.
- W2898716827 cites W2030971064 @default.
- W2898716827 cites W2031937820 @default.
- W2898716827 cites W2039998625 @default.
- W2898716827 cites W2046346940 @default.
- W2898716827 cites W2046907055 @default.
- W2898716827 cites W2052224846 @default.
- W2898716827 cites W2062277924 @default.
- W2898716827 cites W2062828002 @default.
- W2898716827 cites W2067402557 @default.
- W2898716827 cites W2069555378 @default.
- W2898716827 cites W2069768940 @default.
- W2898716827 cites W2075741738 @default.
- W2898716827 cites W2076168319 @default.
- W2898716827 cites W2079137470 @default.
- W2898716827 cites W2079450079 @default.
- W2898716827 cites W2083308932 @default.
- W2898716827 cites W2087596773 @default.
- W2898716827 cites W2089929078 @default.
- W2898716827 cites W2092387899 @default.
- W2898716827 cites W2093310243 @default.
- W2898716827 cites W2093381148 @default.
- W2898716827 cites W2094165076 @default.
- W2898716827 cites W2099424852 @default.
- W2898716827 cites W2118122997 @default.
- W2898716827 cites W2125123634 @default.
- W2898716827 cites W2125667011 @default.
- W2898716827 cites W2218997241 @default.
- W2898716827 cites W2295367304 @default.
- W2898716827 cites W2322821616 @default.
- W2898716827 cites W2406362873 @default.
- W2898716827 cites W2473237167 @default.
- W2898716827 cites W2475280869 @default.
- W2898716827 cites W2547019664 @default.
- W2898716827 cites W2568767859 @default.
- W2898716827 cites W2588110208 @default.
- W2898716827 cites W2738208490 @default.
- W2898716827 cites W2789237698 @default.
- W2898716827 cites W4235171961 @default.
- W2898716827 cites W4250885348 @default.
- W2898716827 doi "https://doi.org/10.1021/acs.langmuir.8b02929" @default.
- W2898716827 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30373363" @default.
- W2898716827 hasPublicationYear "2018" @default.
- W2898716827 type Work @default.
- W2898716827 sameAs 2898716827 @default.
- W2898716827 citedByCount "18" @default.
- W2898716827 countsByYear W28987168272019 @default.
- W2898716827 countsByYear W28987168272020 @default.
- W2898716827 countsByYear W28987168272021 @default.
- W2898716827 countsByYear W28987168272022 @default.
- W2898716827 countsByYear W28987168272023 @default.
- W2898716827 crossrefType "journal-article" @default.
- W2898716827 hasAuthorship W2898716827A5000041263 @default.
- W2898716827 hasAuthorship W2898716827A5000269994 @default.
- W2898716827 hasAuthorship W2898716827A5036046334 @default.
- W2898716827 hasAuthorship W2898716827A5069636422 @default.
- W2898716827 hasConcept C121332964 @default.
- W2898716827 hasConcept C127413603 @default.
- W2898716827 hasConcept C134514944 @default.
- W2898716827 hasConcept C147597530 @default.
- W2898716827 hasConcept C149792144 @default.
- W2898716827 hasConcept C157915830 @default.
- W2898716827 hasConcept C159467904 @default.
- W2898716827 hasConcept C159985019 @default.
- W2898716827 hasConcept C171250308 @default.
- W2898716827 hasConcept C185592680 @default.
- W2898716827 hasConcept C192562407 @default.