Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898796705> ?p ?o ?g. }
- W2898796705 abstract "Short-term Quantitative Precipitation Forecasting is important for flood forecasting, early flood warning, and natural hazard management. This study proposes a precipitation forecast model by extrapolating Cloud-Top Brightness Temperature (CTBT) using advanced Deep Neural Networks, and applying the forecasted CTBT into an effective rainfall retrieval algorithm to obtain the Short-term Quantitative Precipitation Forecasting (0–6 hr). To achieve such tasks, we propose a Long Short-Term Memory (LSTM) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), respectively. The precipitation forecasts obtained from our proposed framework, (i.e., LSTM combined with PERSIANN) are compared with a Recurrent Neural Network (RNN), Persistency method, and Farneback optical flow each combined with PERSIANN algorithm and the numerical model results from the first version of Rapid Refresh (RAPv1.0) over three regions in the United States, including the states of Oregon, Oklahoma, and Florida. Our experiments indicate better statistics, such as correlation coefficient and root-mean-square error, for the CTBT forecasts from the proposed LSTM compared to the RNN, Persistency, and the Farneback method. The precipitation forecasts from the proposed LSTM and PERSIANN framework has demonstrated better statistics compared to the RAPv1.0 numerical forecasts and PERSIANN estimations from RNN, Persistency, and Farneback projections in terms of Probability of Detection, False Alarm Ratio, Critical Success Index, correlation coefficient, and root-mean-square error, especially in predicting the convective rainfalls. The proposed method shows superior capabilities in short-term forecasting over compared methods, and has the potential to be implemented globally as an alternative short-term forecast product." @default.
- W2898796705 created "2018-11-09" @default.
- W2898796705 creator A5024715871 @default.
- W2898796705 creator A5034964982 @default.
- W2898796705 creator A5043969757 @default.
- W2898796705 creator A5067692406 @default.
- W2898796705 creator A5071637554 @default.
- W2898796705 creator A5073965947 @default.
- W2898796705 date "2018-11-19" @default.
- W2898796705 modified "2023-10-02" @default.
- W2898796705 title "Short‐Term Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural Networks" @default.
- W2898796705 cites W1485981043 @default.
- W2898796705 cites W1580822624 @default.
- W2898796705 cites W1689711448 @default.
- W2898796705 cites W1755205674 @default.
- W2898796705 cites W1907141412 @default.
- W2898796705 cites W1909234690 @default.
- W2898796705 cites W1965295327 @default.
- W2898796705 cites W1971129545 @default.
- W2898796705 cites W1979562053 @default.
- W2898796705 cites W1979939918 @default.
- W2898796705 cites W1989872370 @default.
- W2898796705 cites W1992493952 @default.
- W2898796705 cites W1996150433 @default.
- W2898796705 cites W2001675020 @default.
- W2898796705 cites W2010398575 @default.
- W2898796705 cites W2011826789 @default.
- W2898796705 cites W2016589492 @default.
- W2898796705 cites W2017200583 @default.
- W2898796705 cites W2024414272 @default.
- W2898796705 cites W2026392121 @default.
- W2898796705 cites W2044589140 @default.
- W2898796705 cites W2064675550 @default.
- W2898796705 cites W2069143585 @default.
- W2898796705 cites W2078652529 @default.
- W2898796705 cites W2079735306 @default.
- W2898796705 cites W2082134041 @default.
- W2898796705 cites W2085831481 @default.
- W2898796705 cites W2094653192 @default.
- W2898796705 cites W2098979503 @default.
- W2898796705 cites W2099399987 @default.
- W2898796705 cites W2100649405 @default.
- W2898796705 cites W2102327672 @default.
- W2898796705 cites W2108700726 @default.
- W2898796705 cites W2110242546 @default.
- W2898796705 cites W2110485445 @default.
- W2898796705 cites W2112056087 @default.
- W2898796705 cites W2136848157 @default.
- W2898796705 cites W2137376882 @default.
- W2898796705 cites W2143612262 @default.
- W2898796705 cites W2157331557 @default.
- W2898796705 cites W2160203977 @default.
- W2898796705 cites W2161565164 @default.
- W2898796705 cites W2165169067 @default.
- W2898796705 cites W2169309160 @default.
- W2898796705 cites W2174658266 @default.
- W2898796705 cites W2176231028 @default.
- W2898796705 cites W2180860082 @default.
- W2898796705 cites W2259421489 @default.
- W2898796705 cites W2264975561 @default.
- W2898796705 cites W2408982486 @default.
- W2898796705 cites W2470898428 @default.
- W2898796705 cites W2530612396 @default.
- W2898796705 cites W2593080009 @default.
- W2898796705 cites W2615552492 @default.
- W2898796705 cites W2745003183 @default.
- W2898796705 cites W2766736793 @default.
- W2898796705 cites W2805760720 @default.
- W2898796705 cites W3151416132 @default.
- W2898796705 cites W65738273 @default.
- W2898796705 doi "https://doi.org/10.1029/2018jd028375" @default.
- W2898796705 hasPublicationYear "2018" @default.
- W2898796705 type Work @default.
- W2898796705 sameAs 2898796705 @default.
- W2898796705 citedByCount "66" @default.
- W2898796705 countsByYear W28987967052019 @default.
- W2898796705 countsByYear W28987967052020 @default.
- W2898796705 countsByYear W28987967052021 @default.
- W2898796705 countsByYear W28987967052022 @default.
- W2898796705 countsByYear W28987967052023 @default.
- W2898796705 crossrefType "journal-article" @default.
- W2898796705 hasAuthorship W2898796705A5024715871 @default.
- W2898796705 hasAuthorship W2898796705A5034964982 @default.
- W2898796705 hasAuthorship W2898796705A5043969757 @default.
- W2898796705 hasAuthorship W2898796705A5067692406 @default.
- W2898796705 hasAuthorship W2898796705A5071637554 @default.
- W2898796705 hasAuthorship W2898796705A5073965947 @default.
- W2898796705 hasBestOaLocation W28987967051 @default.
- W2898796705 hasConcept C105795698 @default.
- W2898796705 hasConcept C107054158 @default.
- W2898796705 hasConcept C119857082 @default.
- W2898796705 hasConcept C121332964 @default.
- W2898796705 hasConcept C139945424 @default.
- W2898796705 hasConcept C147168706 @default.
- W2898796705 hasConcept C153294291 @default.
- W2898796705 hasConcept C154945302 @default.
- W2898796705 hasConcept C205649164 @default.
- W2898796705 hasConcept C2780092901 @default.
- W2898796705 hasConcept C33923547 @default.
- W2898796705 hasConcept C41008148 @default.