Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898818720> ?p ?o ?g. }
- W2898818720 endingPage "1287" @default.
- W2898818720 startingPage "1260" @default.
- W2898818720 abstract "Insurance and economic data are often positive, and we need to take into account this peculiarity in choosing a statistical model for their distribution. An example is the inverse Gaussian (IG), which is one of the most famous and considered distributions with positive support. With the aim of increasing the use of the IG distribution on insurance and economic data, we propose a convenient mode-based parameterization yielding the reparametrized IG (rIG) distribution; it allows/simplifies the use of the IG distribution in various branches of statistics, and we give some examples. In nonparametric statistics, we define a smoother based on rIG kernels. By construction, the estimator is well-defined and does not allocate probability mass to unrealistic negative values. We adopt likelihood cross-validation to select the smoothing parameter. In robust statistics, we propose the contaminated IG distribution, a heavy-tailed generalization of the rIG distribution to accommodate mild outliers. Finally, for model-based clustering and semiparametric density estimation, we present finite mixtures of rIG distributions. We use the EM algorithm to obtain maximum likelihood estimates of the parameters of the mixture and contaminated models. We use insurance data about bodily injury claims, and economic data about incomes of Italian households, to illustrate the models." @default.
- W2898818720 created "2018-11-09" @default.
- W2898818720 creator A5009939605 @default.
- W2898818720 date "2018-11-03" @default.
- W2898818720 modified "2023-09-25" @default.
- W2898818720 title "A new look at the inverse Gaussian distribution with applications to insurance and economic data" @default.
- W2898818720 cites W1173188441 @default.
- W2898818720 cites W1490036161 @default.
- W2898818720 cites W1498017815 @default.
- W2898818720 cites W1560144238 @default.
- W2898818720 cites W1702032637 @default.
- W2898818720 cites W1742465820 @default.
- W2898818720 cites W1767217354 @default.
- W2898818720 cites W1813521933 @default.
- W2898818720 cites W1838672373 @default.
- W2898818720 cites W189864091 @default.
- W2898818720 cites W1966322875 @default.
- W2898818720 cites W1966502880 @default.
- W2898818720 cites W1975059750 @default.
- W2898818720 cites W1976969815 @default.
- W2898818720 cites W1986010085 @default.
- W2898818720 cites W1986035445 @default.
- W2898818720 cites W1994083140 @default.
- W2898818720 cites W2009959910 @default.
- W2898818720 cites W2010980257 @default.
- W2898818720 cites W2011832962 @default.
- W2898818720 cites W2020647518 @default.
- W2898818720 cites W2023163585 @default.
- W2898818720 cites W2023689787 @default.
- W2898818720 cites W2024373130 @default.
- W2898818720 cites W2026628102 @default.
- W2898818720 cites W2038147874 @default.
- W2898818720 cites W2039468635 @default.
- W2898818720 cites W2048298626 @default.
- W2898818720 cites W2053135387 @default.
- W2898818720 cites W2053742104 @default.
- W2898818720 cites W2054231149 @default.
- W2898818720 cites W2054336336 @default.
- W2898818720 cites W2072825397 @default.
- W2898818720 cites W2077024349 @default.
- W2898818720 cites W2082301243 @default.
- W2898818720 cites W2089763487 @default.
- W2898818720 cites W2089952084 @default.
- W2898818720 cites W2091466376 @default.
- W2898818720 cites W2091955409 @default.
- W2898818720 cites W2128716185 @default.
- W2898818720 cites W2129819572 @default.
- W2898818720 cites W2130096227 @default.
- W2898818720 cites W2130444042 @default.
- W2898818720 cites W2130481484 @default.
- W2898818720 cites W2140444612 @default.
- W2898818720 cites W2145904291 @default.
- W2898818720 cites W2150230417 @default.
- W2898818720 cites W2168175751 @default.
- W2898818720 cites W2171093924 @default.
- W2898818720 cites W2180384296 @default.
- W2898818720 cites W2196329906 @default.
- W2898818720 cites W2208193594 @default.
- W2898818720 cites W2408832908 @default.
- W2898818720 cites W2461082701 @default.
- W2898818720 cites W2491984381 @default.
- W2898818720 cites W2492307518 @default.
- W2898818720 cites W2495882236 @default.
- W2898818720 cites W2508112170 @default.
- W2898818720 cites W2551174787 @default.
- W2898818720 cites W2560430179 @default.
- W2898818720 cites W2770610745 @default.
- W2898818720 cites W2786845965 @default.
- W2898818720 cites W2905233554 @default.
- W2898818720 cites W2962730912 @default.
- W2898818720 cites W2963461702 @default.
- W2898818720 cites W2963540081 @default.
- W2898818720 cites W2963702653 @default.
- W2898818720 cites W3098194146 @default.
- W2898818720 cites W3098381019 @default.
- W2898818720 cites W4234965868 @default.
- W2898818720 cites W4237042686 @default.
- W2898818720 cites W4239873714 @default.
- W2898818720 cites W4241828813 @default.
- W2898818720 cites W4248681815 @default.
- W2898818720 cites W4375184042 @default.
- W2898818720 cites W61754189 @default.
- W2898818720 cites W79763606 @default.
- W2898818720 cites W92184265 @default.
- W2898818720 doi "https://doi.org/10.1080/02664763.2018.1542668" @default.
- W2898818720 hasPublicationYear "2018" @default.
- W2898818720 type Work @default.
- W2898818720 sameAs 2898818720 @default.
- W2898818720 citedByCount "36" @default.
- W2898818720 countsByYear W28988187202019 @default.
- W2898818720 countsByYear W28988187202020 @default.
- W2898818720 countsByYear W28988187202021 @default.
- W2898818720 countsByYear W28988187202022 @default.
- W2898818720 countsByYear W28988187202023 @default.
- W2898818720 crossrefType "journal-article" @default.
- W2898818720 hasAuthorship W2898818720A5009939605 @default.
- W2898818720 hasBestOaLocation W28988187201 @default.
- W2898818720 hasConcept C102366305 @default.