Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898821140> ?p ?o ?g. }
- W2898821140 endingPage "69" @default.
- W2898821140 startingPage "62" @default.
- W2898821140 abstract "Estimating uncertainty in forest growth predictions is essential to support large-area policies and decisions. The aim of this study was to estimate model and sampling uncertainties at a regional level. To do this, we generated forest growth predictions for three ecotypes in the Bas-Saint-Laurent region of Quebec, Canada. Predictions were generated using the ARTEMIS growth model that allows for stochasticity in some of the sub-models. We used a bootstrap hybrid estimator to estimate the variances arising from the model and the sampling. Moreover, the variance due to the model was further decomposed to determine which dynamic sub-model induced the greatest share of variance. Results revealed that sampling accounted for most of the variance in short-term predictions. In long-term predictions, the model contribution turned out to be as important as that of the sampling. The variance decomposition per sub-model indicated that the mortality sub-model induced the highest variability in the predictions. These results were consistent for the three ecotypes. We recommend that efforts in variance reduction focus on increasing the sample size in short-term predictions and on improving the mortality sub-model in long-term predictions." @default.
- W2898821140 created "2018-11-09" @default.
- W2898821140 creator A5017720871 @default.
- W2898821140 creator A5059587211 @default.
- W2898821140 creator A5071685655 @default.
- W2898821140 date "2018-12-01" @default.
- W2898821140 modified "2023-10-06" @default.
- W2898821140 title "Estimating model- and sampling-related uncertainty in large-area growth predictions" @default.
- W2898821140 cites W1493781386 @default.
- W2898821140 cites W1842700253 @default.
- W2898821140 cites W1890751261 @default.
- W2898821140 cites W1979959270 @default.
- W2898821140 cites W1991640470 @default.
- W2898821140 cites W1995909050 @default.
- W2898821140 cites W1998994624 @default.
- W2898821140 cites W2000189019 @default.
- W2898821140 cites W2000603443 @default.
- W2898821140 cites W2003053265 @default.
- W2898821140 cites W2004090786 @default.
- W2898821140 cites W2012462918 @default.
- W2898821140 cites W2017282822 @default.
- W2898821140 cites W2021474216 @default.
- W2898821140 cites W2028440779 @default.
- W2898821140 cites W2039858089 @default.
- W2898821140 cites W2041619292 @default.
- W2898821140 cites W2048098468 @default.
- W2898821140 cites W2048305092 @default.
- W2898821140 cites W2084958926 @default.
- W2898821140 cites W2090306689 @default.
- W2898821140 cites W2102094072 @default.
- W2898821140 cites W2105963649 @default.
- W2898821140 cites W2107620039 @default.
- W2898821140 cites W2112815453 @default.
- W2898821140 cites W2122153187 @default.
- W2898821140 cites W2129457952 @default.
- W2898821140 cites W2131044970 @default.
- W2898821140 cites W2134608924 @default.
- W2898821140 cites W2135025591 @default.
- W2898821140 cites W2157238761 @default.
- W2898821140 cites W2159631971 @default.
- W2898821140 cites W2172033636 @default.
- W2898821140 cites W2191976936 @default.
- W2898821140 cites W2280901852 @default.
- W2898821140 cites W2288393565 @default.
- W2898821140 cites W2313455935 @default.
- W2898821140 cites W2320934521 @default.
- W2898821140 cites W2409625806 @default.
- W2898821140 cites W2482094160 @default.
- W2898821140 cites W2485202016 @default.
- W2898821140 cites W2610568050 @default.
- W2898821140 cites W2735073798 @default.
- W2898821140 cites W2768114213 @default.
- W2898821140 cites W744675831 @default.
- W2898821140 doi "https://doi.org/10.1016/j.ecolmodel.2018.10.011" @default.
- W2898821140 hasPublicationYear "2018" @default.
- W2898821140 type Work @default.
- W2898821140 sameAs 2898821140 @default.
- W2898821140 citedByCount "10" @default.
- W2898821140 countsByYear W28988211402019 @default.
- W2898821140 countsByYear W28988211402020 @default.
- W2898821140 countsByYear W28988211402021 @default.
- W2898821140 countsByYear W28988211402022 @default.
- W2898821140 crossrefType "journal-article" @default.
- W2898821140 hasAuthorship W2898821140A5017720871 @default.
- W2898821140 hasAuthorship W2898821140A5059587211 @default.
- W2898821140 hasAuthorship W2898821140A5071685655 @default.
- W2898821140 hasBestOaLocation W28988211403 @default.
- W2898821140 hasConcept C105795698 @default.
- W2898821140 hasConcept C106131492 @default.
- W2898821140 hasConcept C108311543 @default.
- W2898821140 hasConcept C121332964 @default.
- W2898821140 hasConcept C121955636 @default.
- W2898821140 hasConcept C140779682 @default.
- W2898821140 hasConcept C149782125 @default.
- W2898821140 hasConcept C152587130 @default.
- W2898821140 hasConcept C162324750 @default.
- W2898821140 hasConcept C185429906 @default.
- W2898821140 hasConcept C19499675 @default.
- W2898821140 hasConcept C196083921 @default.
- W2898821140 hasConcept C31972630 @default.
- W2898821140 hasConcept C33923547 @default.
- W2898821140 hasConcept C39432304 @default.
- W2898821140 hasConcept C41008148 @default.
- W2898821140 hasConcept C61797465 @default.
- W2898821140 hasConcept C62520636 @default.
- W2898821140 hasConcept C62644790 @default.
- W2898821140 hasConcept C89715816 @default.
- W2898821140 hasConcept C99476002 @default.
- W2898821140 hasConceptScore W2898821140C105795698 @default.
- W2898821140 hasConceptScore W2898821140C106131492 @default.
- W2898821140 hasConceptScore W2898821140C108311543 @default.
- W2898821140 hasConceptScore W2898821140C121332964 @default.
- W2898821140 hasConceptScore W2898821140C121955636 @default.
- W2898821140 hasConceptScore W2898821140C140779682 @default.
- W2898821140 hasConceptScore W2898821140C149782125 @default.
- W2898821140 hasConceptScore W2898821140C152587130 @default.
- W2898821140 hasConceptScore W2898821140C162324750 @default.
- W2898821140 hasConceptScore W2898821140C185429906 @default.