Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898842920> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2898842920 endingPage "1318" @default.
- W2898842920 startingPage "1306" @default.
- W2898842920 abstract "Image denoising is a vital and indispensable pre-process for most applied image processing systems. Having prior knowledge about the noise level is essential for optimizing denoising algorithms. However, this information most likely does not exist for real applications and is much harder to extract from a single noisy image than from multiple noisy images. For Gaussian noise, there are many accurate state-of-the-art level estimations, whereas there are only limited random valued impulse noise level estimations proposed. Moreover, the existing proposed impulse noise estimators are limited in accuracy, especially in the presence of high noise levels. This paper presents a new random-valued impulse noise level estimation (RVI-E) algorithm using only a single image. The presented RVI-E algorithm is based on distribution property of impulse noise pixels, on correlation among the image, and on a new linear relationship between the percentage of big-distorted noise and one of all noise. The mathematical study, computer simulations, and analysis on 347 different images using five online grayscale image databases shows that (a) the presented method is efficient, robust and reliable, (b) the presented methods show stably accurate performance across images with different contents and different levels of noise (lower than 60%), and (c) the speed performance of the proposed RVI can be boosted by the parallel computing strategy, since the estimation utilizes a parallel framework." @default.
- W2898842920 created "2018-11-09" @default.
- W2898842920 creator A5032811639 @default.
- W2898842920 creator A5069074343 @default.
- W2898842920 creator A5074543641 @default.
- W2898842920 date "2018-11-02" @default.
- W2898842920 modified "2023-09-27" @default.
- W2898842920 title "Single Image Based Random-Value Impulse Noise Level Estimation Algorithm" @default.
- W2898842920 cites W1500068122 @default.
- W2898842920 cites W1528198175 @default.
- W2898842920 cites W1582541701 @default.
- W2898842920 cites W1599508898 @default.
- W2898842920 cites W1968192508 @default.
- W2898842920 cites W1973758555 @default.
- W2898842920 cites W2014541137 @default.
- W2898842920 cites W2051199380 @default.
- W2898842920 cites W2087820232 @default.
- W2898842920 cites W2097202275 @default.
- W2898842920 cites W2112221886 @default.
- W2898842920 cites W2153244537 @default.
- W2898842920 cites W2157686118 @default.
- W2898842920 cites W2158994553 @default.
- W2898842920 cites W2159736423 @default.
- W2898842920 cites W2161260884 @default.
- W2898842920 cites W2162266621 @default.
- W2898842920 cites W2324239198 @default.
- W2898842920 cites W4233323564 @default.
- W2898842920 doi "https://doi.org/10.1007/978-3-030-01177-2_95" @default.
- W2898842920 hasPublicationYear "2018" @default.
- W2898842920 type Work @default.
- W2898842920 sameAs 2898842920 @default.
- W2898842920 citedByCount "1" @default.
- W2898842920 countsByYear W28988429202022 @default.
- W2898842920 crossrefType "book-chapter" @default.
- W2898842920 hasAuthorship W2898842920A5032811639 @default.
- W2898842920 hasAuthorship W2898842920A5069074343 @default.
- W2898842920 hasAuthorship W2898842920A5074543641 @default.
- W2898842920 hasConcept C11413529 @default.
- W2898842920 hasConcept C115961682 @default.
- W2898842920 hasConcept C121332964 @default.
- W2898842920 hasConcept C127372701 @default.
- W2898842920 hasConcept C127413603 @default.
- W2898842920 hasConcept C154945302 @default.
- W2898842920 hasConcept C160633673 @default.
- W2898842920 hasConcept C201995342 @default.
- W2898842920 hasConcept C33923547 @default.
- W2898842920 hasConcept C41008148 @default.
- W2898842920 hasConcept C62520636 @default.
- W2898842920 hasConcept C70836080 @default.
- W2898842920 hasConcept C96250715 @default.
- W2898842920 hasConcept C99498987 @default.
- W2898842920 hasConceptScore W2898842920C11413529 @default.
- W2898842920 hasConceptScore W2898842920C115961682 @default.
- W2898842920 hasConceptScore W2898842920C121332964 @default.
- W2898842920 hasConceptScore W2898842920C127372701 @default.
- W2898842920 hasConceptScore W2898842920C127413603 @default.
- W2898842920 hasConceptScore W2898842920C154945302 @default.
- W2898842920 hasConceptScore W2898842920C160633673 @default.
- W2898842920 hasConceptScore W2898842920C201995342 @default.
- W2898842920 hasConceptScore W2898842920C33923547 @default.
- W2898842920 hasConceptScore W2898842920C41008148 @default.
- W2898842920 hasConceptScore W2898842920C62520636 @default.
- W2898842920 hasConceptScore W2898842920C70836080 @default.
- W2898842920 hasConceptScore W2898842920C96250715 @default.
- W2898842920 hasConceptScore W2898842920C99498987 @default.
- W2898842920 hasLocation W28988429201 @default.
- W2898842920 hasOpenAccess W2898842920 @default.
- W2898842920 hasPrimaryLocation W28988429201 @default.
- W2898842920 hasRelatedWork W1582240042 @default.
- W2898842920 hasRelatedWork W1979972864 @default.
- W2898842920 hasRelatedWork W2145048514 @default.
- W2898842920 hasRelatedWork W2199715634 @default.
- W2898842920 hasRelatedWork W2347606733 @default.
- W2898842920 hasRelatedWork W2351491280 @default.
- W2898842920 hasRelatedWork W2354855219 @default.
- W2898842920 hasRelatedWork W2362416688 @default.
- W2898842920 hasRelatedWork W2462725891 @default.
- W2898842920 hasRelatedWork W303980170 @default.
- W2898842920 isParatext "false" @default.
- W2898842920 isRetracted "false" @default.
- W2898842920 magId "2898842920" @default.
- W2898842920 workType "book-chapter" @default.