Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898845230> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2898845230 abstract "A spin-torque oscillator (STO) is a microwave oscillator based on a magnetoresistive (MR) element [1], [2], and has been investigated for applications such as information storages, communications, and computing units. For these applications, large output signal and stable oscillation are necessary. So far, it has been reported that the large output signal can be obtained by out-of-plane precession (OPP) of free layer in an STO based on a magnetic tunnel junction (MTJ) and having an in-plane pinned layer [3]–[6]. This is because in OPP change of angle between the magnetizations of free and pinned layers is large and the relative angle change is converted into the output signal through the large MR effect of the MTJ. To further improve the output power and the stability of the OPP, we have recently fabricated an STO based on an in-plane MTJ with a synthetic ferrimagnet (SyF) free layer (SyF-STO). We have chosen the SyF free layer because improvement of the output power and the stability has been reported for in-plane oscillation [7]–[9]. We have investigated whether the OPP is possible in the SyF-STO. As a result, by the OPP of the free layer we have obtained large output power of the order of $1 mu mathrm {W}$ in perpendicular field [10]. (In Ref. [10] we reported the maximum output power of $3.7 mu mathrm {W}$. This value includes an error in estimation, and the correct value is $0.93 mu mathrm {W}$.) In this study, to clarify the reason for the large output power obtained in the SyF-STO, we compare the SyF-STO with an STO with a single free layer (SFL-STO) by micromagnetic simulation. Figure 1 shows schematics of these STOs. The SyF-STO has two free layers which are antiferromagnetically coupled (AFC) by the interlayer coupling. The pinned layers are also AFC. An external field $H_{z}$ and a current $I$ are applied in the perpendicular direction. The spin-transfer torque acts on the free layer 2 and the pinned layer 1. To the bottom pinned layer, a $- x -$direction magnetic field is applied, modeling an exchange bias field. In the simulation, we use the parameters corresponding to the sample in the experiment. The parameters for the SFL-STO are the same as the SyF-STO except that the SFL-STO has a single free layer. Figure 2(a) shows oscillation powers of each STO as a function of $H_{z}$ for $I=8.5$ mA, which are obtained from the $y -$components of the spatially-averaged magnetizations. The oscillation power is estimated by time average of square of the $y -$component of normalized magnetization. For $H_{z}ge 5$ kOe, both STOs exhibit the large oscillation powers due to the OPP. In the SyF-STO, the magnetizations of the two free layers are synchronized and their in-plane components are in opposite directions. The oscillation power is larger for the SyF-STO. In the parameter range of the OPP, the oscillation frequencies of both STOs show essentially the same dependence on $H_{z}$, that is, the oscillation frequencies increase, showing a step. By investigating the waveforms of the magnetizations, we find that this step originates from coupled magnetization oscillation of the free and pinned layers due to magnetic dipolar field and the spintransfer torque. This dependence of the oscillation freqeuncy on $H_{z}$ well reproduces that observed in the experiment [10]. Such steps of oscillation frequency have been reported for SFL-STOs with OPP [1], [7], [11]. To clarify the reason of the difference of the oscillation power, we compare amplitudes of the spatially-averaged magnetizations of the free layers. Figure 2(b) shows time averages of the amplitudes. Since the magnetization is normalized, the amplitude is closer to 1 when the magnetization is spatially uniform. It is found that the amplitude for the SyF-STO is kept near 0.9 for the OPP, while that for the SFL-STO decreases to about 0.75 at around $H_{z}=5$ kOe. This difference means that the free layer magnetization of the SyF-STO is uniform compared with the SFL-STO. Inset in Fig. 2(b) shows magnetization configurations of the free layers of the SyF- and SFL- STOs for $H_{z}=5$ kOe. The $y -$component is shown by the color scale at a moment when the in-plane components of the spatially-averaged magnetizations are in the $x -$direction. In the SyF-STO, although local fluctuations can be seen, their magnitudes are relatively small. On the other hand, in the SFL-STO, the free layer is divided into two regions in which the in-plane components of the magnetizations are almost in opposite directions. This non-uniform magnetization pattern reduces stray field outside the free layer, and stabilizes magnetic field distribution. From this result we think that the almost uniform magnetization precession in the SyF-STO is because the SyF free layer reduces the stray field and thus the magnetic field distribution can be stabilized even by the uniform magnetizations. The uniform OPP of free layer magnetizations leads to the larger output power, which is a possible explanation for the large output power observed in the experiment [10]. Finally, in Fig. 2(c) we compare threshold current for the OPP, and find that the threshold current is smaller for the SyF free layer. It can be thought that this lower threshold current enables the OPP by a bias voltage lower than a voltage at which the dielectric breakdown of the MTJ occurs." @default.
- W2898845230 created "2018-11-09" @default.
- W2898845230 creator A5045361271 @default.
- W2898845230 creator A5057313679 @default.
- W2898845230 creator A5076890372 @default.
- W2898845230 creator A5089793407 @default.
- W2898845230 date "2018-04-01" @default.
- W2898845230 modified "2023-09-28" @default.
- W2898845230 title "Magnetization uniformity and threshold current of out-of-plane precession in spin-torque oscillator with synthetic ferrimagnet free layer under perpendicular magnetic field: Micromagnetic simulation study." @default.
- W2898845230 doi "https://doi.org/10.1109/intmag.2018.8508117" @default.
- W2898845230 hasPublicationYear "2018" @default.
- W2898845230 type Work @default.
- W2898845230 sameAs 2898845230 @default.
- W2898845230 citedByCount "0" @default.
- W2898845230 crossrefType "proceedings-article" @default.
- W2898845230 hasAuthorship W2898845230A5045361271 @default.
- W2898845230 hasAuthorship W2898845230A5057313679 @default.
- W2898845230 hasAuthorship W2898845230A5076890372 @default.
- W2898845230 hasAuthorship W2898845230A5089793407 @default.
- W2898845230 hasConcept C115260700 @default.
- W2898845230 hasConcept C117958382 @default.
- W2898845230 hasConcept C121332964 @default.
- W2898845230 hasConcept C185592680 @default.
- W2898845230 hasConcept C192562407 @default.
- W2898845230 hasConcept C199631012 @default.
- W2898845230 hasConcept C2524010 @default.
- W2898845230 hasConcept C26873012 @default.
- W2898845230 hasConcept C2778439541 @default.
- W2898845230 hasConcept C32546565 @default.
- W2898845230 hasConcept C33923547 @default.
- W2898845230 hasConcept C42704618 @default.
- W2898845230 hasConcept C55493867 @default.
- W2898845230 hasConcept C56202322 @default.
- W2898845230 hasConcept C609986 @default.
- W2898845230 hasConcept C62520636 @default.
- W2898845230 hasConcept C779372 @default.
- W2898845230 hasConcept C81502235 @default.
- W2898845230 hasConcept C82217956 @default.
- W2898845230 hasConcept C97355855 @default.
- W2898845230 hasConceptScore W2898845230C115260700 @default.
- W2898845230 hasConceptScore W2898845230C117958382 @default.
- W2898845230 hasConceptScore W2898845230C121332964 @default.
- W2898845230 hasConceptScore W2898845230C185592680 @default.
- W2898845230 hasConceptScore W2898845230C192562407 @default.
- W2898845230 hasConceptScore W2898845230C199631012 @default.
- W2898845230 hasConceptScore W2898845230C2524010 @default.
- W2898845230 hasConceptScore W2898845230C26873012 @default.
- W2898845230 hasConceptScore W2898845230C2778439541 @default.
- W2898845230 hasConceptScore W2898845230C32546565 @default.
- W2898845230 hasConceptScore W2898845230C33923547 @default.
- W2898845230 hasConceptScore W2898845230C42704618 @default.
- W2898845230 hasConceptScore W2898845230C55493867 @default.
- W2898845230 hasConceptScore W2898845230C56202322 @default.
- W2898845230 hasConceptScore W2898845230C609986 @default.
- W2898845230 hasConceptScore W2898845230C62520636 @default.
- W2898845230 hasConceptScore W2898845230C779372 @default.
- W2898845230 hasConceptScore W2898845230C81502235 @default.
- W2898845230 hasConceptScore W2898845230C82217956 @default.
- W2898845230 hasConceptScore W2898845230C97355855 @default.
- W2898845230 hasLocation W28988452301 @default.
- W2898845230 hasOpenAccess W2898845230 @default.
- W2898845230 hasPrimaryLocation W28988452301 @default.
- W2898845230 hasRelatedWork W1551644823 @default.
- W2898845230 hasRelatedWork W1578961077 @default.
- W2898845230 hasRelatedWork W2000528314 @default.
- W2898845230 hasRelatedWork W2032843509 @default.
- W2898845230 hasRelatedWork W2061550921 @default.
- W2898845230 hasRelatedWork W2185089811 @default.
- W2898845230 hasRelatedWork W2216837274 @default.
- W2898845230 hasRelatedWork W2333274136 @default.
- W2898845230 hasRelatedWork W2612254917 @default.
- W2898845230 hasRelatedWork W2738012678 @default.
- W2898845230 hasRelatedWork W2755943030 @default.
- W2898845230 hasRelatedWork W2842078619 @default.
- W2898845230 hasRelatedWork W2906621228 @default.
- W2898845230 hasRelatedWork W3173973962 @default.
- W2898845230 hasRelatedWork W1593643576 @default.
- W2898845230 hasRelatedWork W2241555222 @default.
- W2898845230 hasRelatedWork W2567205655 @default.
- W2898845230 hasRelatedWork W266450745 @default.
- W2898845230 hasRelatedWork W2824334554 @default.
- W2898845230 hasRelatedWork W2830843517 @default.
- W2898845230 isParatext "false" @default.
- W2898845230 isRetracted "false" @default.
- W2898845230 magId "2898845230" @default.
- W2898845230 workType "article" @default.