Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898846720> ?p ?o ?g. }
- W2898846720 abstract "We use machine learning to enable large-scale molecular dynamics (MD) of a correlated electron model under the Gutzwiller approximation scheme. This model exhibits a Mott transition as a function of on-site Coulomb repulsion $U$. The repeated solution of the Gutzwiller self-consistency equations would be prohibitively expensive for large-scale MD simulations. We show that machine learning models of the Gutzwiller potential energy can be remarkably accurate. The models, which are trained with $N=33$ atoms, enable highly accurate MD simulations at much larger scales ($Nensuremath{gtrsim}{10}^{3}$). We investigate the physics of the smooth Mott crossover in the fluid phase." @default.
- W2898846720 created "2018-11-09" @default.
- W2898846720 creator A5003874504 @default.
- W2898846720 creator A5004656368 @default.
- W2898846720 creator A5010280063 @default.
- W2898846720 creator A5021344986 @default.
- W2898846720 creator A5058482299 @default.
- W2898846720 creator A5064974974 @default.
- W2898846720 date "2019-04-08" @default.
- W2898846720 modified "2023-10-15" @default.
- W2898846720 title "Machine learning for molecular dynamics with strongly correlated electrons" @default.
- W2898846720 cites W1515340662 @default.
- W2898846720 cites W1584846110 @default.
- W2898846720 cites W1604797335 @default.
- W2898846720 cites W1964544772 @default.
- W2898846720 cites W1987551102 @default.
- W2898846720 cites W1992161108 @default.
- W2898846720 cites W2000796971 @default.
- W2898846720 cites W2011538146 @default.
- W2898846720 cites W2017474131 @default.
- W2898846720 cites W2037768897 @default.
- W2898846720 cites W2039844736 @default.
- W2898846720 cites W2055526416 @default.
- W2898846720 cites W2072808339 @default.
- W2898846720 cites W2076457885 @default.
- W2898846720 cites W2161516432 @default.
- W2898846720 cites W2197007850 @default.
- W2898846720 cites W2295031101 @default.
- W2898846720 cites W2419175238 @default.
- W2898846720 cites W2516533688 @default.
- W2898846720 cites W2527189750 @default.
- W2898846720 cites W2541404351 @default.
- W2898846720 cites W2602222920 @default.
- W2898846720 cites W2610038766 @default.
- W2898846720 cites W2620687153 @default.
- W2898846720 cites W2728984672 @default.
- W2898846720 cites W2753558426 @default.
- W2898846720 cites W2755695124 @default.
- W2898846720 cites W2770251224 @default.
- W2898846720 cites W2778051509 @default.
- W2898846720 cites W2785813126 @default.
- W2898846720 cites W2884430236 @default.
- W2898846720 cites W2912516940 @default.
- W2898846720 cites W2962676762 @default.
- W2898846720 cites W3101643101 @default.
- W2898846720 cites W3103713775 @default.
- W2898846720 cites W3104239185 @default.
- W2898846720 cites W3104826178 @default.
- W2898846720 cites W3106310231 @default.
- W2898846720 doi "https://doi.org/10.1103/physrevb.99.161107" @default.
- W2898846720 hasPublicationYear "2019" @default.
- W2898846720 type Work @default.
- W2898846720 sameAs 2898846720 @default.
- W2898846720 citedByCount "16" @default.
- W2898846720 countsByYear W28988467202019 @default.
- W2898846720 countsByYear W28988467202020 @default.
- W2898846720 countsByYear W28988467202021 @default.
- W2898846720 countsByYear W28988467202022 @default.
- W2898846720 countsByYear W28988467202023 @default.
- W2898846720 crossrefType "journal-article" @default.
- W2898846720 hasAuthorship W2898846720A5003874504 @default.
- W2898846720 hasAuthorship W2898846720A5004656368 @default.
- W2898846720 hasAuthorship W2898846720A5010280063 @default.
- W2898846720 hasAuthorship W2898846720A5021344986 @default.
- W2898846720 hasAuthorship W2898846720A5058482299 @default.
- W2898846720 hasAuthorship W2898846720A5064974974 @default.
- W2898846720 hasBestOaLocation W28988467201 @default.
- W2898846720 hasConcept C106074065 @default.
- W2898846720 hasConcept C119857082 @default.
- W2898846720 hasConcept C121332964 @default.
- W2898846720 hasConcept C121864883 @default.
- W2898846720 hasConcept C122507166 @default.
- W2898846720 hasConcept C14036430 @default.
- W2898846720 hasConcept C147120987 @default.
- W2898846720 hasConcept C154945302 @default.
- W2898846720 hasConcept C157077121 @default.
- W2898846720 hasConcept C2776436953 @default.
- W2898846720 hasConcept C2778755073 @default.
- W2898846720 hasConcept C41008148 @default.
- W2898846720 hasConcept C54101563 @default.
- W2898846720 hasConcept C59593255 @default.
- W2898846720 hasConcept C62520636 @default.
- W2898846720 hasConcept C78458016 @default.
- W2898846720 hasConcept C86803240 @default.
- W2898846720 hasConcept C9342510 @default.
- W2898846720 hasConceptScore W2898846720C106074065 @default.
- W2898846720 hasConceptScore W2898846720C119857082 @default.
- W2898846720 hasConceptScore W2898846720C121332964 @default.
- W2898846720 hasConceptScore W2898846720C121864883 @default.
- W2898846720 hasConceptScore W2898846720C122507166 @default.
- W2898846720 hasConceptScore W2898846720C14036430 @default.
- W2898846720 hasConceptScore W2898846720C147120987 @default.
- W2898846720 hasConceptScore W2898846720C154945302 @default.
- W2898846720 hasConceptScore W2898846720C157077121 @default.
- W2898846720 hasConceptScore W2898846720C2776436953 @default.
- W2898846720 hasConceptScore W2898846720C2778755073 @default.
- W2898846720 hasConceptScore W2898846720C41008148 @default.
- W2898846720 hasConceptScore W2898846720C54101563 @default.
- W2898846720 hasConceptScore W2898846720C59593255 @default.
- W2898846720 hasConceptScore W2898846720C62520636 @default.