Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898855866> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2898855866 abstract "Given a simple graph $G = (V, E)$ and a constant integer $k ge 2$, the $k$-path vertex cover problem ({sc P$k$VC}) asks for a minimum subset $F subseteq V$ of vertices such that the induced subgraph $G[V - F]$ does not contain any path of order $k$. When $k = 2$, this turns out to be the classic vertex cover ({sc VC}) problem, which admits a $left(2 - {rm Theta}left(frac 1{log|V|}right)right)$-approximation. The general {sc P$k$VC} admits a trivial $k$-approximation; when $k = 3$ and $k = 4$, the best known approximation results for {sc P$3$VC} and {sc P$4$VC} are a $2$-approximation and a $3$-approximation, respectively. On $d$-regular graphs, the approximation ratios can be reduced to $minleft{2 - frac 5{d+3} + epsilon, 2 - frac {(2 - o(1))loglog d}{log d}right}$ for {sc VC} ({it i.e.}, {sc P$2$VC}), $2 - frac 1d + frac {4d - 2}{3d |V|}$ for {sc P$3$VC}, $frac {lfloor d/2rfloor (2d - 2)}{(lfloor d/2rfloor + 1) (d - 2)}$ for {sc P$4$VC}, and $frac {2d - k + 2}{d - k + 2}$ for {sc P$k$VC} when $1 le k-2 < d le 2(k-2)$. By utilizing an existing algorithm for graph defective coloring, we first present a $frac {lfloor d/2rfloor (2d - k + 2)}{(lfloor d/2rfloor + 1) (d - k + 2)}$-approximation for {sc P$k$VC} on $d$-regular graphs when $1 le k - 2 < d$. This beats all the best known approximation results for {sc P$k$VC} on $d$-regular graphs for $k ge 3$, except for {sc P$4$VC} it ties with the best prior work and in particular they tie at $2$ on cubic graphs and $4$-regular graphs. We then propose a $1.875$-approximation and a $1.852$-approximation for {sc P$4$VC} on cubic graphs and $4$-regular graphs, respectively. We also present a better approximation algorithm for {sc P$4$VC} on $d$-regular bipartite graphs." @default.
- W2898855866 created "2018-11-09" @default.
- W2898855866 creator A5001129320 @default.
- W2898855866 creator A5012558946 @default.
- W2898855866 creator A5088766728 @default.
- W2898855866 creator A5089344475 @default.
- W2898855866 date "2018-11-03" @default.
- W2898855866 modified "2023-10-17" @default.
- W2898855866 title "Improved approximation algorithms for path vertex covers in regular graphs" @default.
- W2898855866 cites W154393378 @default.
- W2898855866 cites W1924647272 @default.
- W2898855866 cites W1987064693 @default.
- W2898855866 cites W2007945292 @default.
- W2898855866 cites W2011039300 @default.
- W2898855866 cites W2012391569 @default.
- W2898855866 cites W2014504071 @default.
- W2898855866 cites W2019831445 @default.
- W2898855866 cites W2030970869 @default.
- W2898855866 cites W2038294264 @default.
- W2898855866 cites W2052790720 @default.
- W2898855866 cites W2053079614 @default.
- W2898855866 cites W2053978154 @default.
- W2898855866 cites W2070576097 @default.
- W2898855866 cites W2120358419 @default.
- W2898855866 cites W2125447390 @default.
- W2898855866 cites W2131265210 @default.
- W2898855866 cites W2137118456 @default.
- W2898855866 cites W2141925838 @default.
- W2898855866 cites W2143698439 @default.
- W2898855866 cites W2171055213 @default.
- W2898855866 cites W2281477993 @default.
- W2898855866 cites W3166880264 @default.
- W2898855866 cites W94353364 @default.
- W2898855866 doi "https://doi.org/10.48550/arxiv.1811.01162" @default.
- W2898855866 hasPublicationYear "2018" @default.
- W2898855866 type Work @default.
- W2898855866 sameAs 2898855866 @default.
- W2898855866 citedByCount "0" @default.
- W2898855866 crossrefType "posted-content" @default.
- W2898855866 hasAuthorship W2898855866A5001129320 @default.
- W2898855866 hasAuthorship W2898855866A5012558946 @default.
- W2898855866 hasAuthorship W2898855866A5088766728 @default.
- W2898855866 hasAuthorship W2898855866A5089344475 @default.
- W2898855866 hasBestOaLocation W28988558661 @default.
- W2898855866 hasConcept C10138342 @default.
- W2898855866 hasConcept C114614502 @default.
- W2898855866 hasConcept C118615104 @default.
- W2898855866 hasConcept C127413603 @default.
- W2898855866 hasConcept C132525143 @default.
- W2898855866 hasConcept C148764684 @default.
- W2898855866 hasConcept C162324750 @default.
- W2898855866 hasConcept C182306322 @default.
- W2898855866 hasConcept C2780428219 @default.
- W2898855866 hasConcept C33923547 @default.
- W2898855866 hasConcept C78519656 @default.
- W2898855866 hasConcept C80899671 @default.
- W2898855866 hasConceptScore W2898855866C10138342 @default.
- W2898855866 hasConceptScore W2898855866C114614502 @default.
- W2898855866 hasConceptScore W2898855866C118615104 @default.
- W2898855866 hasConceptScore W2898855866C127413603 @default.
- W2898855866 hasConceptScore W2898855866C132525143 @default.
- W2898855866 hasConceptScore W2898855866C148764684 @default.
- W2898855866 hasConceptScore W2898855866C162324750 @default.
- W2898855866 hasConceptScore W2898855866C182306322 @default.
- W2898855866 hasConceptScore W2898855866C2780428219 @default.
- W2898855866 hasConceptScore W2898855866C33923547 @default.
- W2898855866 hasConceptScore W2898855866C78519656 @default.
- W2898855866 hasConceptScore W2898855866C80899671 @default.
- W2898855866 hasLocation W28988558661 @default.
- W2898855866 hasLocation W28988558662 @default.
- W2898855866 hasOpenAccess W2898855866 @default.
- W2898855866 hasPrimaryLocation W28988558661 @default.
- W2898855866 hasRelatedWork W1719252778 @default.
- W2898855866 hasRelatedWork W195676467 @default.
- W2898855866 hasRelatedWork W2008276241 @default.
- W2898855866 hasRelatedWork W2031098440 @default.
- W2898855866 hasRelatedWork W2034217845 @default.
- W2898855866 hasRelatedWork W2169820283 @default.
- W2898855866 hasRelatedWork W2374778222 @default.
- W2898855866 hasRelatedWork W2555545330 @default.
- W2898855866 hasRelatedWork W4307385446 @default.
- W2898855866 hasRelatedWork W922283457 @default.
- W2898855866 isParatext "false" @default.
- W2898855866 isRetracted "false" @default.
- W2898855866 magId "2898855866" @default.
- W2898855866 workType "article" @default.