Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898857280> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2898857280 abstract "With the development of social media, a huge number of users are attracted by social platforms such as Twitter. Emojis are widely used by social network users when posting messages. Therefore, it is important to mine the relationships between plain texts and emojis. In this paper, we present a neural approach to predict multiple emojis evoked by plain tweets. Our model contains three modules, i.e., a character encoder to learn representations of words from original characters using convolutional neural network (CNN), a sentence encoder to learn representations of sentences using a combination of long short-term memory (LSTM) network and CNN, a multi-label classification module to predict the emojis evoked by a tweet. Besides, attention mechanism is applied at word-level to select important contexts. Our approach is self-labeling and free from expensive and time-consuming manual annotation. Experiments on real-world datasets show that our model outperforms several automatic baselines as well as humans in this task." @default.
- W2898857280 created "2018-11-09" @default.
- W2898857280 creator A5001967239 @default.
- W2898857280 creator A5076051057 @default.
- W2898857280 creator A5076423724 @default.
- W2898857280 creator A5083181758 @default.
- W2898857280 creator A5091902436 @default.
- W2898857280 date "2018-10-08" @default.
- W2898857280 modified "2023-10-16" @default.
- W2898857280 title "Tweet Emoji Prediction Using Hierarchical Model with Attention" @default.
- W2898857280 cites W2079735306 @default.
- W2898857280 cites W2513139648 @default.
- W2898857280 cites W2526960150 @default.
- W2898857280 cites W2594184914 @default.
- W2898857280 cites W2806198715 @default.
- W2898857280 cites W3105179304 @default.
- W2898857280 doi "https://doi.org/10.1145/3267305.3274181" @default.
- W2898857280 hasPublicationYear "2018" @default.
- W2898857280 type Work @default.
- W2898857280 sameAs 2898857280 @default.
- W2898857280 citedByCount "9" @default.
- W2898857280 countsByYear W28988572802019 @default.
- W2898857280 countsByYear W28988572802021 @default.
- W2898857280 countsByYear W28988572802022 @default.
- W2898857280 countsByYear W28988572802023 @default.
- W2898857280 crossrefType "proceedings-article" @default.
- W2898857280 hasAuthorship W2898857280A5001967239 @default.
- W2898857280 hasAuthorship W2898857280A5076051057 @default.
- W2898857280 hasAuthorship W2898857280A5076423724 @default.
- W2898857280 hasAuthorship W2898857280A5083181758 @default.
- W2898857280 hasAuthorship W2898857280A5091902436 @default.
- W2898857280 hasConcept C111919701 @default.
- W2898857280 hasConcept C118505674 @default.
- W2898857280 hasConcept C136764020 @default.
- W2898857280 hasConcept C138885662 @default.
- W2898857280 hasConcept C143275388 @default.
- W2898857280 hasConcept C154945302 @default.
- W2898857280 hasConcept C162324750 @default.
- W2898857280 hasConcept C175154964 @default.
- W2898857280 hasConcept C184337299 @default.
- W2898857280 hasConcept C187736073 @default.
- W2898857280 hasConcept C199360897 @default.
- W2898857280 hasConcept C204321447 @default.
- W2898857280 hasConcept C2524010 @default.
- W2898857280 hasConcept C2777530160 @default.
- W2898857280 hasConcept C2779247141 @default.
- W2898857280 hasConcept C2780451532 @default.
- W2898857280 hasConcept C2780861071 @default.
- W2898857280 hasConcept C33923547 @default.
- W2898857280 hasConcept C41008148 @default.
- W2898857280 hasConcept C41895202 @default.
- W2898857280 hasConcept C518677369 @default.
- W2898857280 hasConcept C81363708 @default.
- W2898857280 hasConcept C90805587 @default.
- W2898857280 hasConceptScore W2898857280C111919701 @default.
- W2898857280 hasConceptScore W2898857280C118505674 @default.
- W2898857280 hasConceptScore W2898857280C136764020 @default.
- W2898857280 hasConceptScore W2898857280C138885662 @default.
- W2898857280 hasConceptScore W2898857280C143275388 @default.
- W2898857280 hasConceptScore W2898857280C154945302 @default.
- W2898857280 hasConceptScore W2898857280C162324750 @default.
- W2898857280 hasConceptScore W2898857280C175154964 @default.
- W2898857280 hasConceptScore W2898857280C184337299 @default.
- W2898857280 hasConceptScore W2898857280C187736073 @default.
- W2898857280 hasConceptScore W2898857280C199360897 @default.
- W2898857280 hasConceptScore W2898857280C204321447 @default.
- W2898857280 hasConceptScore W2898857280C2524010 @default.
- W2898857280 hasConceptScore W2898857280C2777530160 @default.
- W2898857280 hasConceptScore W2898857280C2779247141 @default.
- W2898857280 hasConceptScore W2898857280C2780451532 @default.
- W2898857280 hasConceptScore W2898857280C2780861071 @default.
- W2898857280 hasConceptScore W2898857280C33923547 @default.
- W2898857280 hasConceptScore W2898857280C41008148 @default.
- W2898857280 hasConceptScore W2898857280C41895202 @default.
- W2898857280 hasConceptScore W2898857280C518677369 @default.
- W2898857280 hasConceptScore W2898857280C81363708 @default.
- W2898857280 hasConceptScore W2898857280C90805587 @default.
- W2898857280 hasLocation W28988572801 @default.
- W2898857280 hasOpenAccess W2898857280 @default.
- W2898857280 hasPrimaryLocation W28988572801 @default.
- W2898857280 hasRelatedWork W2013579020 @default.
- W2898857280 hasRelatedWork W2289318896 @default.
- W2898857280 hasRelatedWork W2463465470 @default.
- W2898857280 hasRelatedWork W2898635241 @default.
- W2898857280 hasRelatedWork W2962901450 @default.
- W2898857280 hasRelatedWork W2997778406 @default.
- W2898857280 hasRelatedWork W3005503605 @default.
- W2898857280 hasRelatedWork W3107474891 @default.
- W2898857280 hasRelatedWork W4214542829 @default.
- W2898857280 hasRelatedWork W4281761117 @default.
- W2898857280 isParatext "false" @default.
- W2898857280 isRetracted "false" @default.
- W2898857280 magId "2898857280" @default.
- W2898857280 workType "article" @default.