Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898861785> ?p ?o ?g. }
- W2898861785 endingPage "801" @default.
- W2898861785 startingPage "789" @default.
- W2898861785 abstract "Steam methane reforming is suitable for thermochemical energy storage because of its large reaction enthalpy and high hydrogen content in reaction products. In this paper, heat transfer and storage performance of steam methane reforming in a tubular reactor heated by focused solar simulator is experimental demonstrated and numerically analyzed. According to experimental results, methane conversion remarkably decreases with inlet flow rate rising, while thermochemical energy storage efficiency first increases for more reactants and then decreases with methane conversion dropping. As incident energy flux rises, methane conversion increases with bed temperature rising, and the thermochemical energy storage efficiency reaches its maximum of 11.3% with central heat flux of 285.6 kW/m2. Three-dimensional transport and volumetric reaction model with concentrated energy flux boundary condition is established and validated, and local and integral energy transport and storage performance are further analyzed. Along flow direction, the maximum reaction rate appears before the focal point with maximum energy flux. The tendencies of methane conversion and thermochemical energy storage efficiency are very similar under different inlet conditions, and higher inlet temperature and appropriate steam to methane ratio benefit thermochemical energy storage. The structures of catalyst bed and reactor are critical important for thermochemical energy storage process. As bed length increases, the methane conversion and thermochemical energy storage efficiency first increase with the increase of positive reaction and then decrease with the increase of reverse reaction, and the optimal length is a little larger than focal spot diameter. When bed porosity is increased, the methane conversion and thermochemical energy storage efficiency first increases with the flow resistance decreasing and then decreases with catalyst amount decreasing, and optimal porosity is 0.45. Heat loss in heating side of bed region play major role in heat storage, and the thermochemical energy storage efficiency can be improved to 34.8% by using insulation and coating." @default.
- W2898861785 created "2018-11-09" @default.
- W2898861785 creator A5030296474 @default.
- W2898861785 creator A5036126838 @default.
- W2898861785 creator A5037539183 @default.
- W2898861785 creator A5041253700 @default.
- W2898861785 creator A5061472917 @default.
- W2898861785 creator A5084850742 @default.
- W2898861785 date "2019-01-01" @default.
- W2898861785 modified "2023-10-17" @default.
- W2898861785 title "Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator" @default.
- W2898861785 cites W1965504779 @default.
- W2898861785 cites W1985584400 @default.
- W2898861785 cites W1997343912 @default.
- W2898861785 cites W2000270945 @default.
- W2898861785 cites W2002833505 @default.
- W2898861785 cites W2003498032 @default.
- W2898861785 cites W2005380470 @default.
- W2898861785 cites W2009192271 @default.
- W2898861785 cites W2011098172 @default.
- W2898861785 cites W2015682556 @default.
- W2898861785 cites W2016789465 @default.
- W2898861785 cites W2025617210 @default.
- W2898861785 cites W2031402501 @default.
- W2898861785 cites W2042043328 @default.
- W2898861785 cites W2048977574 @default.
- W2898861785 cites W2050272811 @default.
- W2898861785 cites W2058333262 @default.
- W2898861785 cites W2061262489 @default.
- W2898861785 cites W2064076957 @default.
- W2898861785 cites W2092118664 @default.
- W2898861785 cites W2134188128 @default.
- W2898861785 cites W2135006005 @default.
- W2898861785 cites W2239548908 @default.
- W2898861785 cites W2567295735 @default.
- W2898861785 cites W2586989855 @default.
- W2898861785 cites W2609386529 @default.
- W2898861785 cites W2622075558 @default.
- W2898861785 cites W2625734458 @default.
- W2898861785 cites W2747542701 @default.
- W2898861785 cites W2750473447 @default.
- W2898861785 cites W2751985307 @default.
- W2898861785 cites W2773965652 @default.
- W2898861785 cites W2779842634 @default.
- W2898861785 cites W829055464 @default.
- W2898861785 doi "https://doi.org/10.1016/j.apenergy.2018.10.072" @default.
- W2898861785 hasPublicationYear "2019" @default.
- W2898861785 type Work @default.
- W2898861785 sameAs 2898861785 @default.
- W2898861785 citedByCount "36" @default.
- W2898861785 countsByYear W28988617852019 @default.
- W2898861785 countsByYear W28988617852020 @default.
- W2898861785 countsByYear W28988617852021 @default.
- W2898861785 countsByYear W28988617852022 @default.
- W2898861785 countsByYear W28988617852023 @default.
- W2898861785 crossrefType "journal-article" @default.
- W2898861785 hasAuthorship W2898861785A5030296474 @default.
- W2898861785 hasAuthorship W2898861785A5036126838 @default.
- W2898861785 hasAuthorship W2898861785A5037539183 @default.
- W2898861785 hasAuthorship W2898861785A5041253700 @default.
- W2898861785 hasAuthorship W2898861785A5061472917 @default.
- W2898861785 hasAuthorship W2898861785A5084850742 @default.
- W2898861785 hasConcept C116915560 @default.
- W2898861785 hasConcept C121332964 @default.
- W2898861785 hasConcept C127413603 @default.
- W2898861785 hasConcept C163258240 @default.
- W2898861785 hasConcept C178790620 @default.
- W2898861785 hasConcept C183287310 @default.
- W2898861785 hasConcept C185592680 @default.
- W2898861785 hasConcept C192562407 @default.
- W2898861785 hasConcept C193015443 @default.
- W2898861785 hasConcept C202189072 @default.
- W2898861785 hasConcept C43535742 @default.
- W2898861785 hasConcept C50517652 @default.
- W2898861785 hasConcept C512968161 @default.
- W2898861785 hasConcept C516920438 @default.
- W2898861785 hasConcept C73916439 @default.
- W2898861785 hasConcept C97355855 @default.
- W2898861785 hasConceptScore W2898861785C116915560 @default.
- W2898861785 hasConceptScore W2898861785C121332964 @default.
- W2898861785 hasConceptScore W2898861785C127413603 @default.
- W2898861785 hasConceptScore W2898861785C163258240 @default.
- W2898861785 hasConceptScore W2898861785C178790620 @default.
- W2898861785 hasConceptScore W2898861785C183287310 @default.
- W2898861785 hasConceptScore W2898861785C185592680 @default.
- W2898861785 hasConceptScore W2898861785C192562407 @default.
- W2898861785 hasConceptScore W2898861785C193015443 @default.
- W2898861785 hasConceptScore W2898861785C202189072 @default.
- W2898861785 hasConceptScore W2898861785C43535742 @default.
- W2898861785 hasConceptScore W2898861785C50517652 @default.
- W2898861785 hasConceptScore W2898861785C512968161 @default.
- W2898861785 hasConceptScore W2898861785C516920438 @default.
- W2898861785 hasConceptScore W2898861785C73916439 @default.
- W2898861785 hasConceptScore W2898861785C97355855 @default.
- W2898861785 hasFunder F4320321001 @default.
- W2898861785 hasFunder F4320321921 @default.
- W2898861785 hasFunder F4320335777 @default.
- W2898861785 hasLocation W28988617851 @default.