Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898883729> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W2898883729 endingPage "289" @default.
- W2898883729 startingPage "283" @default.
- W2898883729 abstract "There are 60 major stock exchanges around the world with a total value of $69 trillion. Stocks are traded almost daily. Stock data is available on the Internet right from the beginning. Prediction of stock market is an attractive topic for researchers of different fields. Before the advent of machine learning and data science, stock market movement was primarily analyzed using statistical and technical factors. Now with the help of machine learning techniques, it is possible to accurately identify the stock market movement. Various machine learning techniques like support machine vectors, random forests, gradient boosted trees, etc. have been successfully used in the past to predict stock prices." @default.
- W2898883729 created "2018-11-09" @default.
- W2898883729 creator A5015298492 @default.
- W2898883729 creator A5057362069 @default.
- W2898883729 date "2018-11-05" @default.
- W2898883729 modified "2023-09-23" @default.
- W2898883729 title "Predictive Analysis of Stocks Using Data Mining" @default.
- W2898883729 cites W1259090559 @default.
- W2898883729 cites W1809255060 @default.
- W2898883729 cites W1968361347 @default.
- W2898883729 cites W1974304087 @default.
- W2898883729 cites W2026724722 @default.
- W2898883729 cites W2095184674 @default.
- W2898883729 cites W2304517173 @default.
- W2898883729 cites W2564757211 @default.
- W2898883729 cites W2607424335 @default.
- W2898883729 doi "https://doi.org/10.1007/978-981-13-1927-3_30" @default.
- W2898883729 hasPublicationYear "2018" @default.
- W2898883729 type Work @default.
- W2898883729 sameAs 2898883729 @default.
- W2898883729 citedByCount "1" @default.
- W2898883729 countsByYear W28988837292022 @default.
- W2898883729 crossrefType "book-chapter" @default.
- W2898883729 hasAuthorship W2898883729A5015298492 @default.
- W2898883729 hasAuthorship W2898883729A5057362069 @default.
- W2898883729 hasConcept C41008148 @default.
- W2898883729 hasConceptScore W2898883729C41008148 @default.
- W2898883729 hasLocation W28988837291 @default.
- W2898883729 hasOpenAccess W2898883729 @default.
- W2898883729 hasPrimaryLocation W28988837291 @default.
- W2898883729 hasRelatedWork W2049775471 @default.
- W2898883729 hasRelatedWork W2093578348 @default.
- W2898883729 hasRelatedWork W2350741829 @default.
- W2898883729 hasRelatedWork W2358668433 @default.
- W2898883729 hasRelatedWork W2376932109 @default.
- W2898883729 hasRelatedWork W2382290278 @default.
- W2898883729 hasRelatedWork W2390279801 @default.
- W2898883729 hasRelatedWork W2748952813 @default.
- W2898883729 hasRelatedWork W2899084033 @default.
- W2898883729 hasRelatedWork W3004735627 @default.
- W2898883729 isParatext "false" @default.
- W2898883729 isRetracted "false" @default.
- W2898883729 magId "2898883729" @default.
- W2898883729 workType "book-chapter" @default.