Matches in SemOpenAlex for { <https://semopenalex.org/work/W2898892757> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2898892757 abstract "Abstract To explore the best method for quantitative detection of moisture content in rice seeds, the total of 120 samples of rice seeds with different moisture content were studied by hyperspectral technique in the experiment. Sensitive wavelengths of moisture were firstly selected by calculating the migration rate, after that successive projections algorithm (SPA) was used to select characteristic wavelengths. The clustering method was proposed to increase the ability of prediction model by increasing the discrimination of hyperspectral eigenvalues of each sample group. Firstly, fuzzy C‐mean clustering (FCM) algorithm was applied to cluster the characteristic wavelengths selected by SPA. Then the prediction model was established by support vector regression (SVR). Due to the unsatisfied clustering effect, simulated annealing genetic algorithm (SAGA) was introduced for clustering. By comparing the results based on original eigenvalues, FCM and SAGA clustering, respectively, it was found that the best method was SAGA. The SAGA‐SVR mode achieved the value with of .8892 and RMSEP of 0.0296. The relaxation variable was introduced to reduce interval threshold because the was not ideal, and the final value achieved with of .9318 and RMSEP of 0.0264. It was proved that the SAGA‐SVR model can be used for moisture detection of rice seeds. Practical applications Rice is widely cultivated around the world, the moisture content of rice seed is an important index for judging the quality of rice seeds. The moisture detection of single rice seed is absolutely feasible, but the moisture content of single rice seed is not representative. Traditional methods cannot make batch detection of moisture content in rice seeds, which are also easy to cause secondary pollution in the process of detection, so they cannot meet the requirements of fine management in modern agricultural. Hyperspectral technology, a safe and effective technique, has been widely used in moisture detection of foods. This study showed that hyperspectral technology can accurately predict moisture content in rice seeds after proper data processing." @default.
- W2898892757 created "2018-11-09" @default.
- W2898892757 creator A5010842155 @default.
- W2898892757 creator A5033894975 @default.
- W2898892757 creator A5034909747 @default.
- W2898892757 creator A5062905630 @default.
- W2898892757 creator A5067563426 @default.
- W2898892757 creator A5080213192 @default.
- W2898892757 date "2018-10-30" @default.
- W2898892757 modified "2023-09-25" @default.
- W2898892757 title "Quantitative detection of moisture content in rice seeds based on hyperspectral technique" @default.
- W2898892757 cites W2027817311 @default.
- W2898892757 cites W2093730316 @default.
- W2898892757 cites W2153635508 @default.
- W2898892757 cites W2499682827 @default.
- W2898892757 cites W2731726724 @default.
- W2898892757 cites W2762068652 @default.
- W2898892757 cites W2776202363 @default.
- W2898892757 doi "https://doi.org/10.1111/jfpe.12916" @default.
- W2898892757 hasPublicationYear "2018" @default.
- W2898892757 type Work @default.
- W2898892757 sameAs 2898892757 @default.
- W2898892757 citedByCount "13" @default.
- W2898892757 countsByYear W28988927572019 @default.
- W2898892757 countsByYear W28988927572020 @default.
- W2898892757 countsByYear W28988927572021 @default.
- W2898892757 countsByYear W28988927572022 @default.
- W2898892757 countsByYear W28988927572023 @default.
- W2898892757 crossrefType "journal-article" @default.
- W2898892757 hasAuthorship W2898892757A5010842155 @default.
- W2898892757 hasAuthorship W2898892757A5033894975 @default.
- W2898892757 hasAuthorship W2898892757A5034909747 @default.
- W2898892757 hasAuthorship W2898892757A5062905630 @default.
- W2898892757 hasAuthorship W2898892757A5067563426 @default.
- W2898892757 hasAuthorship W2898892757A5080213192 @default.
- W2898892757 hasConcept C105795698 @default.
- W2898892757 hasConcept C121332964 @default.
- W2898892757 hasConcept C12267149 @default.
- W2898892757 hasConcept C127413603 @default.
- W2898892757 hasConcept C153180895 @default.
- W2898892757 hasConcept C153294291 @default.
- W2898892757 hasConcept C154945302 @default.
- W2898892757 hasConcept C158693339 @default.
- W2898892757 hasConcept C159078339 @default.
- W2898892757 hasConcept C17212007 @default.
- W2898892757 hasConcept C176864760 @default.
- W2898892757 hasConcept C187320778 @default.
- W2898892757 hasConcept C205649164 @default.
- W2898892757 hasConcept C24939127 @default.
- W2898892757 hasConcept C33923547 @default.
- W2898892757 hasConcept C41008148 @default.
- W2898892757 hasConcept C62520636 @default.
- W2898892757 hasConcept C73555534 @default.
- W2898892757 hasConceptScore W2898892757C105795698 @default.
- W2898892757 hasConceptScore W2898892757C121332964 @default.
- W2898892757 hasConceptScore W2898892757C12267149 @default.
- W2898892757 hasConceptScore W2898892757C127413603 @default.
- W2898892757 hasConceptScore W2898892757C153180895 @default.
- W2898892757 hasConceptScore W2898892757C153294291 @default.
- W2898892757 hasConceptScore W2898892757C154945302 @default.
- W2898892757 hasConceptScore W2898892757C158693339 @default.
- W2898892757 hasConceptScore W2898892757C159078339 @default.
- W2898892757 hasConceptScore W2898892757C17212007 @default.
- W2898892757 hasConceptScore W2898892757C176864760 @default.
- W2898892757 hasConceptScore W2898892757C187320778 @default.
- W2898892757 hasConceptScore W2898892757C205649164 @default.
- W2898892757 hasConceptScore W2898892757C24939127 @default.
- W2898892757 hasConceptScore W2898892757C33923547 @default.
- W2898892757 hasConceptScore W2898892757C41008148 @default.
- W2898892757 hasConceptScore W2898892757C62520636 @default.
- W2898892757 hasConceptScore W2898892757C73555534 @default.
- W2898892757 hasFunder F4320326182 @default.
- W2898892757 hasIssue "8" @default.
- W2898892757 hasLocation W28988927571 @default.
- W2898892757 hasOpenAccess W2898892757 @default.
- W2898892757 hasPrimaryLocation W28988927571 @default.
- W2898892757 hasRelatedWork W2028628118 @default.
- W2898892757 hasRelatedWork W2041399278 @default.
- W2898892757 hasRelatedWork W2051197289 @default.
- W2898892757 hasRelatedWork W2056016498 @default.
- W2898892757 hasRelatedWork W2136184105 @default.
- W2898892757 hasRelatedWork W2336974148 @default.
- W2898892757 hasRelatedWork W3013515612 @default.
- W2898892757 hasRelatedWork W3173596272 @default.
- W2898892757 hasRelatedWork W2187500075 @default.
- W2898892757 hasRelatedWork W2345184372 @default.
- W2898892757 hasVolume "41" @default.
- W2898892757 isParatext "false" @default.
- W2898892757 isRetracted "false" @default.
- W2898892757 magId "2898892757" @default.
- W2898892757 workType "article" @default.