Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899018082> ?p ?o ?g. }
- W2899018082 endingPage "1880" @default.
- W2899018082 startingPage "1867" @default.
- W2899018082 abstract "The balance of neighborhood space around a central point is an important concept in cluster analysis. It can be used to effectively detect cluster boundary objects. The existing neighborhood analysis methods focus on the distribution of data, i.e., analyzing the characteristic of the neighborhood space from a single perspective, and could not obtain rich data characteristics. In this paper, we analyze the high-dimensional neighborhood space from multiple perspectives. By simulating each dimension of a data point's k nearest neighbors space (kNNs) as a lever, we apply the lever principle to compute the balance fulcrum of each dimension after proving its inevitability and uniqueness. Then, we model the distance between the projected coordinate of the data point and the balance fulcrum on each dimension and construct the DHBlan coefficient to measure the balance of the neighborhood space. Based on this theoretical model, we propose a simple yet effective cluster boundary detection algorithm called Lever. Experiments on both low- and high-dimensional data sets validate the effectiveness and efficiency of our proposed algorithm." @default.
- W2899018082 created "2018-11-09" @default.
- W2899018082 creator A5008564713 @default.
- W2899018082 creator A5012820667 @default.
- W2899018082 creator A5015728132 @default.
- W2899018082 creator A5016569030 @default.
- W2899018082 creator A5043782065 @default.
- W2899018082 creator A5051512158 @default.
- W2899018082 date "2019-06-01" @default.
- W2899018082 modified "2023-10-18" @default.
- W2899018082 title "Multidimensional Balance-Based Cluster Boundary Detection for High-Dimensional Data" @default.
- W2899018082 cites W1223058609 @default.
- W2899018082 cites W1536826708 @default.
- W2899018082 cites W1572963380 @default.
- W2899018082 cites W1978642336 @default.
- W2899018082 cites W1990063425 @default.
- W2899018082 cites W1992962224 @default.
- W2899018082 cites W2007312210 @default.
- W2899018082 cites W2007508006 @default.
- W2899018082 cites W2009702937 @default.
- W2899018082 cites W2011430131 @default.
- W2899018082 cites W2013283603 @default.
- W2899018082 cites W2022686119 @default.
- W2899018082 cites W2023512014 @default.
- W2899018082 cites W2030068474 @default.
- W2899018082 cites W2035979693 @default.
- W2899018082 cites W2050829396 @default.
- W2899018082 cites W2066991356 @default.
- W2899018082 cites W2073264810 @default.
- W2899018082 cites W2073852340 @default.
- W2899018082 cites W2080511794 @default.
- W2899018082 cites W2088470289 @default.
- W2899018082 cites W2095897464 @default.
- W2899018082 cites W2095976636 @default.
- W2899018082 cites W2098920923 @default.
- W2899018082 cites W2100399071 @default.
- W2899018082 cites W2102999520 @default.
- W2899018082 cites W2110414616 @default.
- W2899018082 cites W2110574819 @default.
- W2899018082 cites W2118020555 @default.
- W2899018082 cites W2118782187 @default.
- W2899018082 cites W2121246530 @default.
- W2899018082 cites W2121475599 @default.
- W2899018082 cites W2121772968 @default.
- W2899018082 cites W2125070513 @default.
- W2899018082 cites W2127966029 @default.
- W2899018082 cites W2136261479 @default.
- W2899018082 cites W2137608137 @default.
- W2899018082 cites W2140747632 @default.
- W2899018082 cites W2141012957 @default.
- W2899018082 cites W2144421119 @default.
- W2899018082 cites W2148744937 @default.
- W2899018082 cites W2156919418 @default.
- W2899018082 cites W2160396543 @default.
- W2899018082 cites W2160883143 @default.
- W2899018082 cites W2164500538 @default.
- W2899018082 cites W2169618946 @default.
- W2899018082 cites W2191487670 @default.
- W2899018082 cites W2197830862 @default.
- W2899018082 cites W2247747841 @default.
- W2899018082 cites W2262457538 @default.
- W2899018082 cites W2262682506 @default.
- W2899018082 cites W2283740079 @default.
- W2899018082 cites W2333530847 @default.
- W2899018082 cites W2342709286 @default.
- W2899018082 cites W2342792901 @default.
- W2899018082 cites W2358962606 @default.
- W2899018082 cites W2407712691 @default.
- W2899018082 cites W2408567721 @default.
- W2899018082 cites W2515500989 @default.
- W2899018082 cites W2606436201 @default.
- W2899018082 cites W2615068864 @default.
- W2899018082 cites W4254182148 @default.
- W2899018082 cites W79139011 @default.
- W2899018082 doi "https://doi.org/10.1109/tnnls.2018.2874458" @default.
- W2899018082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30387747" @default.
- W2899018082 hasPublicationYear "2019" @default.
- W2899018082 type Work @default.
- W2899018082 sameAs 2899018082 @default.
- W2899018082 citedByCount "7" @default.
- W2899018082 countsByYear W28990180822020 @default.
- W2899018082 countsByYear W28990180822021 @default.
- W2899018082 countsByYear W28990180822022 @default.
- W2899018082 countsByYear W28990180822023 @default.
- W2899018082 crossrefType "journal-article" @default.
- W2899018082 hasAuthorship W2899018082A5008564713 @default.
- W2899018082 hasAuthorship W2899018082A5012820667 @default.
- W2899018082 hasAuthorship W2899018082A5015728132 @default.
- W2899018082 hasAuthorship W2899018082A5016569030 @default.
- W2899018082 hasAuthorship W2899018082A5043782065 @default.
- W2899018082 hasAuthorship W2899018082A5051512158 @default.
- W2899018082 hasBestOaLocation W28990180822 @default.
- W2899018082 hasConcept C107524782 @default.
- W2899018082 hasConcept C111919701 @default.
- W2899018082 hasConcept C11413529 @default.
- W2899018082 hasConcept C114614502 @default.
- W2899018082 hasConcept C120665830 @default.
- W2899018082 hasConcept C121332964 @default.