Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899043197> ?p ?o ?g. }
- W2899043197 endingPage "1726" @default.
- W2899043197 startingPage "1726" @default.
- W2899043197 abstract "Developing countries often have poor monitoring and reporting of weather and crop health, leading to slow responses to droughts and food shortages. Here, I develop satellite analysis methods and software tools to predict crop yields two to four months before the harvest. This method measures relative vegetation health based on pixel-level monthly anomalies of NDVI, EVI and NDWI indices. Because no crop mask, tuning, or subnational ground truth data are required, this method can be applied to any location, crop, or climate, making it ideal for African countries with small fields and poor ground observations. Testing began in Illinois where there is reliable county-level crop data. Correlations were computed between corn, soybean, and sorghum yields and monthly vegetation health anomalies for every county and year. A multivariate regression using every index and month (up to 1600 values) produced a correlation of 0.86 with corn, 0.74 for soybeans, and 0.65 for sorghum, all with p-values less than 10 − 6 . The high correlations in Illinois show that this model has good forecasting skill for crop yields. Next, the method was applied to every country in Africa for each country’s main crops. Crop production was then predicted for the 2018 harvest and compared to actual production values. Twenty percent of the predictions had less than 2% error, and 40% had less than 5% error. This method is unique because of its simplicity and versatility: it shows that a single user on a laptop computer can produce reasonable real-time estimates of crop yields across an entire continent." @default.
- W2899043197 created "2018-11-09" @default.
- W2899043197 creator A5035733984 @default.
- W2899043197 date "2018-11-01" @default.
- W2899043197 modified "2023-10-18" @default.
- W2899043197 title "Real-Time Prediction of Crop Yields From MODIS Relative Vegetation Health: A Continent-Wide Analysis of Africa" @default.
- W2899043197 cites W1943531292 @default.
- W2899043197 cites W1966483641 @default.
- W2899043197 cites W1968148624 @default.
- W2899043197 cites W1972057228 @default.
- W2899043197 cites W1978617972 @default.
- W2899043197 cites W1986072339 @default.
- W2899043197 cites W2000116611 @default.
- W2899043197 cites W2002467160 @default.
- W2899043197 cites W2010558190 @default.
- W2899043197 cites W2017107861 @default.
- W2899043197 cites W2021652078 @default.
- W2899043197 cites W2023336635 @default.
- W2899043197 cites W2026971306 @default.
- W2899043197 cites W2029604816 @default.
- W2899043197 cites W2030584283 @default.
- W2899043197 cites W2056162341 @default.
- W2899043197 cites W2059155959 @default.
- W2899043197 cites W2065032274 @default.
- W2899043197 cites W2077509829 @default.
- W2899043197 cites W2101482183 @default.
- W2899043197 cites W2104062561 @default.
- W2899043197 cites W2113410727 @default.
- W2899043197 cites W2114385036 @default.
- W2899043197 cites W2116627051 @default.
- W2899043197 cites W2132077228 @default.
- W2899043197 cites W2132914650 @default.
- W2899043197 cites W2141815566 @default.
- W2899043197 cites W2148065586 @default.
- W2899043197 cites W2167594433 @default.
- W2899043197 cites W2235201318 @default.
- W2899043197 cites W2291129597 @default.
- W2899043197 cites W2311556292 @default.
- W2899043197 cites W2333294354 @default.
- W2899043197 cites W2336347226 @default.
- W2899043197 cites W2414117070 @default.
- W2899043197 cites W2548254147 @default.
- W2899043197 cites W2552805558 @default.
- W2899043197 cites W2588316148 @default.
- W2899043197 cites W2751549785 @default.
- W2899043197 cites W2756843371 @default.
- W2899043197 cites W2883026662 @default.
- W2899043197 doi "https://doi.org/10.3390/rs10111726" @default.
- W2899043197 hasPublicationYear "2018" @default.
- W2899043197 type Work @default.
- W2899043197 sameAs 2899043197 @default.
- W2899043197 citedByCount "33" @default.
- W2899043197 countsByYear W28990431972018 @default.
- W2899043197 countsByYear W28990431972019 @default.
- W2899043197 countsByYear W28990431972020 @default.
- W2899043197 countsByYear W28990431972021 @default.
- W2899043197 countsByYear W28990431972022 @default.
- W2899043197 countsByYear W28990431972023 @default.
- W2899043197 crossrefType "journal-article" @default.
- W2899043197 hasAuthorship W2899043197A5035733984 @default.
- W2899043197 hasBestOaLocation W28990431971 @default.
- W2899043197 hasConcept C118518473 @default.
- W2899043197 hasConcept C127413603 @default.
- W2899043197 hasConcept C137580998 @default.
- W2899043197 hasConcept C142724271 @default.
- W2899043197 hasConcept C1549246 @default.
- W2899043197 hasConcept C166957645 @default.
- W2899043197 hasConcept C205649164 @default.
- W2899043197 hasConcept C25989453 @default.
- W2899043197 hasConcept C2776133958 @default.
- W2899043197 hasConcept C2778157034 @default.
- W2899043197 hasConcept C39432304 @default.
- W2899043197 hasConcept C6557445 @default.
- W2899043197 hasConcept C71924100 @default.
- W2899043197 hasConcept C86803240 @default.
- W2899043197 hasConcept C88463610 @default.
- W2899043197 hasConcept C97137747 @default.
- W2899043197 hasConceptScore W2899043197C118518473 @default.
- W2899043197 hasConceptScore W2899043197C127413603 @default.
- W2899043197 hasConceptScore W2899043197C137580998 @default.
- W2899043197 hasConceptScore W2899043197C142724271 @default.
- W2899043197 hasConceptScore W2899043197C1549246 @default.
- W2899043197 hasConceptScore W2899043197C166957645 @default.
- W2899043197 hasConceptScore W2899043197C205649164 @default.
- W2899043197 hasConceptScore W2899043197C25989453 @default.
- W2899043197 hasConceptScore W2899043197C2776133958 @default.
- W2899043197 hasConceptScore W2899043197C2778157034 @default.
- W2899043197 hasConceptScore W2899043197C39432304 @default.
- W2899043197 hasConceptScore W2899043197C6557445 @default.
- W2899043197 hasConceptScore W2899043197C71924100 @default.
- W2899043197 hasConceptScore W2899043197C86803240 @default.
- W2899043197 hasConceptScore W2899043197C88463610 @default.
- W2899043197 hasConceptScore W2899043197C97137747 @default.
- W2899043197 hasIssue "11" @default.
- W2899043197 hasLocation W28990431971 @default.
- W2899043197 hasLocation W28990431972 @default.
- W2899043197 hasLocation W28990431973 @default.
- W2899043197 hasLocation W28990431974 @default.