Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899051391> ?p ?o ?g. }
- W2899051391 endingPage "1817" @default.
- W2899051391 startingPage "1803" @default.
- W2899051391 abstract "Multidimensional data (i.e., tensors) with missing entries are common in practice. Extracting features from incomplete tensors is an important yet challenging problem in many fields such as machine learning, pattern recognition, and computer vision. Although the missing entries can be recovered by tensor completion techniques, these completion methods focus only on missing data estimation instead of effective feature extraction. To the best of our knowledge, the problem of feature extraction from incomplete tensors has yet to be well explored in the literature. In this paper, we therefore tackle this problem within the unsupervised learning environment. Specifically, we incorporate <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>low-rank tensor decomposition</i> with <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>feature variance maximization</i> (TDVM) in a unified framework. Based on orthogonal Tucker and CP decompositions, we design two TDVM methods, TDVM-Tucker and TDVM-CP, to learn low-dimensional features viewing the core tensors of the Tucker model as features and viewing the weight vectors of the CP model as features. TDVM explores the relationship among data samples via maximizing feature variance and simultaneously estimates the missing entries via low-rank Tucker/CP approximation, leading to informative features extracted directly from observed entries. Furthermore, we generalize the proposed methods by formulating a general model that incorporates feature regularization into low-rank tensor approximation. In addition, we develop a joint optimization scheme to solve the proposed methods by integrating the alternating direction method of multipliers with the block coordinate descent method. Finally, we evaluate our methods on six real-world image and video data sets under a newly designed multiblock missing setting. The extracted features are evaluated in face recognition, object/action classification, and face/gait clustering. Experimental results demonstrate the superior performance of the proposed methods compared with the state-of-the-art approaches." @default.
- W2899051391 created "2018-11-09" @default.
- W2899051391 creator A5009807039 @default.
- W2899051391 creator A5038516431 @default.
- W2899051391 creator A5038698223 @default.
- W2899051391 creator A5083182987 @default.
- W2899051391 date "2019-06-01" @default.
- W2899051391 modified "2023-10-18" @default.
- W2899051391 title "Feature Extraction for Incomplete Data Via Low-Rank Tensor Decomposition With Feature Regularization" @default.
- W2899051391 cites W1621802500 @default.
- W2899051391 cites W1814521481 @default.
- W2899051391 cites W1878057855 @default.
- W2899051391 cites W1884731728 @default.
- W2899051391 cites W1993482030 @default.
- W2899051391 cites W1993962865 @default.
- W2899051391 cites W2000215628 @default.
- W2899051391 cites W2002598080 @default.
- W2899051391 cites W2010399676 @default.
- W2899051391 cites W2011775600 @default.
- W2899051391 cites W2013912476 @default.
- W2899051391 cites W2024165284 @default.
- W2899051391 cites W2028273200 @default.
- W2899051391 cites W2030927653 @default.
- W2899051391 cites W2033419168 @default.
- W2899051391 cites W2044017907 @default.
- W2899051391 cites W2091449379 @default.
- W2899051391 cites W2094685358 @default.
- W2899051391 cites W2103972604 @default.
- W2899051391 cites W2104157166 @default.
- W2899051391 cites W2108714833 @default.
- W2899051391 cites W2114112206 @default.
- W2899051391 cites W2125874614 @default.
- W2899051391 cites W2129812935 @default.
- W2899051391 cites W2132267493 @default.
- W2899051391 cites W2141200867 @default.
- W2899051391 cites W2143885292 @default.
- W2899051391 cites W2145152441 @default.
- W2899051391 cites W2146332392 @default.
- W2899051391 cites W2147512299 @default.
- W2899051391 cites W2151458682 @default.
- W2899051391 cites W2196439578 @default.
- W2899051391 cites W2342432191 @default.
- W2899051391 cites W2345068797 @default.
- W2899051391 cites W2527153419 @default.
- W2899051391 cites W2609983914 @default.
- W2899051391 cites W2611328865 @default.
- W2899051391 cites W2621677039 @default.
- W2899051391 cites W2751253323 @default.
- W2899051391 cites W2767478428 @default.
- W2899051391 cites W2775111227 @default.
- W2899051391 cites W2776249130 @default.
- W2899051391 cites W2793784710 @default.
- W2899051391 cites W2895116104 @default.
- W2899051391 cites W2963328634 @default.
- W2899051391 cites W2963368983 @default.
- W2899051391 cites W2964214749 @default.
- W2899051391 cites W3124414826 @default.
- W2899051391 doi "https://doi.org/10.1109/tnnls.2018.2873655" @default.
- W2899051391 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30371391" @default.
- W2899051391 hasPublicationYear "2019" @default.
- W2899051391 type Work @default.
- W2899051391 sameAs 2899051391 @default.
- W2899051391 citedByCount "40" @default.
- W2899051391 countsByYear W28990513912019 @default.
- W2899051391 countsByYear W28990513912020 @default.
- W2899051391 countsByYear W28990513912021 @default.
- W2899051391 countsByYear W28990513912022 @default.
- W2899051391 countsByYear W28990513912023 @default.
- W2899051391 crossrefType "journal-article" @default.
- W2899051391 hasAuthorship W2899051391A5009807039 @default.
- W2899051391 hasAuthorship W2899051391A5038516431 @default.
- W2899051391 hasAuthorship W2899051391A5038698223 @default.
- W2899051391 hasAuthorship W2899051391A5083182987 @default.
- W2899051391 hasBestOaLocation W28990513912 @default.
- W2899051391 hasConcept C114614502 @default.
- W2899051391 hasConcept C119857082 @default.
- W2899051391 hasConcept C138885662 @default.
- W2899051391 hasConcept C153180895 @default.
- W2899051391 hasConcept C154945302 @default.
- W2899051391 hasConcept C155281189 @default.
- W2899051391 hasConcept C164226766 @default.
- W2899051391 hasConcept C202444582 @default.
- W2899051391 hasConcept C2776135515 @default.
- W2899051391 hasConcept C2776401178 @default.
- W2899051391 hasConcept C2986737658 @default.
- W2899051391 hasConcept C33923547 @default.
- W2899051391 hasConcept C41008148 @default.
- W2899051391 hasConcept C41895202 @default.
- W2899051391 hasConcept C42704193 @default.
- W2899051391 hasConcept C52622490 @default.
- W2899051391 hasConcept C9357733 @default.
- W2899051391 hasConceptScore W2899051391C114614502 @default.
- W2899051391 hasConceptScore W2899051391C119857082 @default.
- W2899051391 hasConceptScore W2899051391C138885662 @default.
- W2899051391 hasConceptScore W2899051391C153180895 @default.
- W2899051391 hasConceptScore W2899051391C154945302 @default.
- W2899051391 hasConceptScore W2899051391C155281189 @default.
- W2899051391 hasConceptScore W2899051391C164226766 @default.