Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899080806> ?p ?o ?g. }
- W2899080806 endingPage "409" @default.
- W2899080806 startingPage "399" @default.
- W2899080806 abstract "In this study, data-mining techniques comprising three forecasting algorithms for accurate and precise cooling load requirement prediction in the building environment, with the primary aim and the objective of improving the load management are applied. Three state-of-the-art cooling load prediction algorithms are – multiple-linear regression (MLR) model, Gaussian process regression (GPR) model and Levenberg–Marquardt backpropagation neural network (LMB-NN) model. The Pearson correlation analysis is practiced calculating the correlation between actual cooling load demand and input feature variables of climate parameters. The impact of climate variability on the building load requirement is also analyzed. Forecasting intervals are divided into two basic parts: (i) 7-day ahead prediction; and (ii) 1-month ahead prediction. To assess the prediction performance, four performance evaluation indices are applied, which are: (i) coefficient of correlation (R); (ii) mean absolute error (MAE); (iii) mean absolute percentage error (MAPE); and (iv) coefficient of variation (CV). The model's performance is compared with the selection of different hidden neurons at different load conditions. The MAPE for 7-day ahead prediction interval by MLR, GPR and LMB-NN model is 13.053%, 0.405% and 2.592%, respectively. Furthermore, the data-mining algorithms are compared and validated with the previous study, and the MAPE of Bayesian regularization neural networks is calculated 2.515% for 7-day ahead prediction. It was witnessed that the algorithms could be applied to facilitate the building cooling load prediction, by applying a relatively limited number of parameters related to energy usage as well as environmental impact in the building environment. The forecasting results show that the three algorithms are effective in predicting the irregular behavior in the data as well as cooling load demand prediction." @default.
- W2899080806 created "2018-11-09" @default.
- W2899080806 creator A5030090943 @default.
- W2899080806 creator A5054440931 @default.
- W2899080806 creator A5081253987 @default.
- W2899080806 creator A5083868707 @default.
- W2899080806 date "2019-02-01" @default.
- W2899080806 modified "2023-10-18" @default.
- W2899080806 title "Deployment of data-mining short and medium-term horizon cooling load forecasting models for building energy optimization and management" @default.
- W2899080806 cites W1432496056 @default.
- W2899080806 cites W1965345917 @default.
- W2899080806 cites W2032170121 @default.
- W2899080806 cites W2042131079 @default.
- W2899080806 cites W2045045282 @default.
- W2899080806 cites W2047143310 @default.
- W2899080806 cites W2050299018 @default.
- W2899080806 cites W2051607409 @default.
- W2899080806 cites W2057320261 @default.
- W2899080806 cites W2062414211 @default.
- W2899080806 cites W2062690987 @default.
- W2899080806 cites W2064469609 @default.
- W2899080806 cites W2071855127 @default.
- W2899080806 cites W2086792939 @default.
- W2899080806 cites W2093269541 @default.
- W2899080806 cites W2093447280 @default.
- W2899080806 cites W2120911092 @default.
- W2899080806 cites W2130608062 @default.
- W2899080806 cites W2142827986 @default.
- W2899080806 cites W2152008458 @default.
- W2899080806 cites W2155482699 @default.
- W2899080806 cites W2161336914 @default.
- W2899080806 cites W2163167422 @default.
- W2899080806 cites W2169790708 @default.
- W2899080806 cites W2170200693 @default.
- W2899080806 cites W2173299659 @default.
- W2899080806 cites W2175143722 @default.
- W2899080806 cites W2303781951 @default.
- W2899080806 cites W2472326376 @default.
- W2899080806 cites W2513964223 @default.
- W2899080806 cites W2549906944 @default.
- W2899080806 cites W2594142095 @default.
- W2899080806 cites W2595246364 @default.
- W2899080806 cites W2622802531 @default.
- W2899080806 cites W2789243543 @default.
- W2899080806 cites W2793228931 @default.
- W2899080806 cites W2800683445 @default.
- W2899080806 cites W2807115920 @default.
- W2899080806 cites W284364187 @default.
- W2899080806 cites W2884234184 @default.
- W2899080806 doi "https://doi.org/10.1016/j.ijrefrig.2018.10.017" @default.
- W2899080806 hasPublicationYear "2019" @default.
- W2899080806 type Work @default.
- W2899080806 sameAs 2899080806 @default.
- W2899080806 citedByCount "30" @default.
- W2899080806 countsByYear W28990808062019 @default.
- W2899080806 countsByYear W28990808062020 @default.
- W2899080806 countsByYear W28990808062021 @default.
- W2899080806 countsByYear W28990808062022 @default.
- W2899080806 crossrefType "journal-article" @default.
- W2899080806 hasAuthorship W2899080806A5030090943 @default.
- W2899080806 hasAuthorship W2899080806A5054440931 @default.
- W2899080806 hasAuthorship W2899080806A5081253987 @default.
- W2899080806 hasAuthorship W2899080806A5083868707 @default.
- W2899080806 hasConcept C103402496 @default.
- W2899080806 hasConcept C103742991 @default.
- W2899080806 hasConcept C105795698 @default.
- W2899080806 hasConcept C119857082 @default.
- W2899080806 hasConcept C124101348 @default.
- W2899080806 hasConcept C127413603 @default.
- W2899080806 hasConcept C139945424 @default.
- W2899080806 hasConcept C150217764 @default.
- W2899080806 hasConcept C2780092901 @default.
- W2899080806 hasConcept C2781099182 @default.
- W2899080806 hasConcept C33923547 @default.
- W2899080806 hasConcept C41008148 @default.
- W2899080806 hasConcept C45804977 @default.
- W2899080806 hasConcept C48921125 @default.
- W2899080806 hasConcept C50644808 @default.
- W2899080806 hasConcept C55078378 @default.
- W2899080806 hasConcept C78519656 @default.
- W2899080806 hasConcept C81692654 @default.
- W2899080806 hasConceptScore W2899080806C103402496 @default.
- W2899080806 hasConceptScore W2899080806C103742991 @default.
- W2899080806 hasConceptScore W2899080806C105795698 @default.
- W2899080806 hasConceptScore W2899080806C119857082 @default.
- W2899080806 hasConceptScore W2899080806C124101348 @default.
- W2899080806 hasConceptScore W2899080806C127413603 @default.
- W2899080806 hasConceptScore W2899080806C139945424 @default.
- W2899080806 hasConceptScore W2899080806C150217764 @default.
- W2899080806 hasConceptScore W2899080806C2780092901 @default.
- W2899080806 hasConceptScore W2899080806C2781099182 @default.
- W2899080806 hasConceptScore W2899080806C33923547 @default.
- W2899080806 hasConceptScore W2899080806C41008148 @default.
- W2899080806 hasConceptScore W2899080806C45804977 @default.
- W2899080806 hasConceptScore W2899080806C48921125 @default.
- W2899080806 hasConceptScore W2899080806C50644808 @default.
- W2899080806 hasConceptScore W2899080806C55078378 @default.
- W2899080806 hasConceptScore W2899080806C78519656 @default.