Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899100982> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2899100982 abstract "Convolutional neural networks are effective supervised learning models which are widely used nowadays in various applications ranging from computer vision tasks such as image detection and classification, image captioning, to video classification. Even if the convolutional models are highly performant, a major drawback is given by their computationally expensiveness from the viewpoint of the required memory, additions and multiplications operations and thus are hardly portable on limited-resource devices. The purpose of this paper is to demonstrate the applicability of convolutional neural networks for low resource devices and to study their performance in real life scenarios. In this respect, with the major goal of preserving the performance, we propose a convolutional neural network model, called SimpLeNet, using distillation for image tagging that can run on low-resource devices such as smartphones, smartwatches, tablets or TVs. Experiments performed on MNIST data set for image classification emphasize the effectiveness of SimpLeNet, both in terms of model’s size reduction, as well as in terms of classification accuracy" @default.
- W2899100982 created "2018-11-09" @default.
- W2899100982 creator A5031352916 @default.
- W2899100982 creator A5052905844 @default.
- W2899100982 date "2018-09-01" @default.
- W2899100982 modified "2023-09-25" @default.
- W2899100982 title "Optimizing Convolutional Neural Networks for low-resource devices" @default.
- W2899100982 cites W1686810756 @default.
- W2899100982 cites W1821462560 @default.
- W2899100982 cites W2097117768 @default.
- W2899100982 cites W2106578604 @default.
- W2899100982 cites W2145607950 @default.
- W2899100982 cites W2163605009 @default.
- W2899100982 cites W2271840356 @default.
- W2899100982 cites W2279098554 @default.
- W2899100982 cites W2294370754 @default.
- W2899100982 cites W2417429787 @default.
- W2899100982 cites W2612445135 @default.
- W2899100982 cites W2783000019 @default.
- W2899100982 cites W2789977158 @default.
- W2899100982 cites W2963382180 @default.
- W2899100982 cites W2963703618 @default.
- W2899100982 cites W2964153729 @default.
- W2899100982 cites W83577577 @default.
- W2899100982 doi "https://doi.org/10.1109/iccp.2018.8516645" @default.
- W2899100982 hasPublicationYear "2018" @default.
- W2899100982 type Work @default.
- W2899100982 sameAs 2899100982 @default.
- W2899100982 citedByCount "0" @default.
- W2899100982 crossrefType "proceedings-article" @default.
- W2899100982 hasAuthorship W2899100982A5031352916 @default.
- W2899100982 hasAuthorship W2899100982A5052905844 @default.
- W2899100982 hasConcept C108583219 @default.
- W2899100982 hasConcept C111919701 @default.
- W2899100982 hasConcept C115051666 @default.
- W2899100982 hasConcept C115961682 @default.
- W2899100982 hasConcept C119857082 @default.
- W2899100982 hasConcept C153180895 @default.
- W2899100982 hasConcept C154945302 @default.
- W2899100982 hasConcept C177264268 @default.
- W2899100982 hasConcept C186967261 @default.
- W2899100982 hasConcept C190502265 @default.
- W2899100982 hasConcept C199360897 @default.
- W2899100982 hasConcept C2779960059 @default.
- W2899100982 hasConcept C41008148 @default.
- W2899100982 hasConcept C50644808 @default.
- W2899100982 hasConcept C75294576 @default.
- W2899100982 hasConcept C76155785 @default.
- W2899100982 hasConcept C81363708 @default.
- W2899100982 hasConceptScore W2899100982C108583219 @default.
- W2899100982 hasConceptScore W2899100982C111919701 @default.
- W2899100982 hasConceptScore W2899100982C115051666 @default.
- W2899100982 hasConceptScore W2899100982C115961682 @default.
- W2899100982 hasConceptScore W2899100982C119857082 @default.
- W2899100982 hasConceptScore W2899100982C153180895 @default.
- W2899100982 hasConceptScore W2899100982C154945302 @default.
- W2899100982 hasConceptScore W2899100982C177264268 @default.
- W2899100982 hasConceptScore W2899100982C186967261 @default.
- W2899100982 hasConceptScore W2899100982C190502265 @default.
- W2899100982 hasConceptScore W2899100982C199360897 @default.
- W2899100982 hasConceptScore W2899100982C2779960059 @default.
- W2899100982 hasConceptScore W2899100982C41008148 @default.
- W2899100982 hasConceptScore W2899100982C50644808 @default.
- W2899100982 hasConceptScore W2899100982C75294576 @default.
- W2899100982 hasConceptScore W2899100982C76155785 @default.
- W2899100982 hasConceptScore W2899100982C81363708 @default.
- W2899100982 hasLocation W28991009821 @default.
- W2899100982 hasOpenAccess W2899100982 @default.
- W2899100982 hasPrimaryLocation W28991009821 @default.
- W2899100982 hasRelatedWork W2269278629 @default.
- W2899100982 hasRelatedWork W2564111483 @default.
- W2899100982 hasRelatedWork W2767899175 @default.
- W2899100982 hasRelatedWork W2781820017 @default.
- W2899100982 hasRelatedWork W2787134274 @default.
- W2899100982 hasRelatedWork W2803928583 @default.
- W2899100982 hasRelatedWork W2898377853 @default.
- W2899100982 hasRelatedWork W2910152480 @default.
- W2899100982 hasRelatedWork W2981963725 @default.
- W2899100982 hasRelatedWork W2998996837 @default.
- W2899100982 hasRelatedWork W3003321877 @default.
- W2899100982 hasRelatedWork W3016258355 @default.
- W2899100982 hasRelatedWork W3019657956 @default.
- W2899100982 hasRelatedWork W3037755158 @default.
- W2899100982 hasRelatedWork W3046485517 @default.
- W2899100982 hasRelatedWork W3091118304 @default.
- W2899100982 hasRelatedWork W3118457286 @default.
- W2899100982 hasRelatedWork W3118549639 @default.
- W2899100982 hasRelatedWork W3139867738 @default.
- W2899100982 hasRelatedWork W3213033076 @default.
- W2899100982 isParatext "false" @default.
- W2899100982 isRetracted "false" @default.
- W2899100982 magId "2899100982" @default.
- W2899100982 workType "article" @default.