Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899117996> ?p ?o ?g. }
- W2899117996 endingPage "16" @default.
- W2899117996 startingPage "7" @default.
- W2899117996 abstract "Quantitative risk assessment (QRA) has played an effective role in improving safety of process systems during the last decades. However, QRA conventional techniques such as fault tree and bow-tie diagram suffer from drawbacks as being static and ineffective in handling uncertainty, which hamper their application to risk analysis of process systems. Bayesian network (BN) has well proven as a flexible and robust technique in accident modeling and risk assessment of engineering systems. Despite its merits, conventional applications of BN have been criticized for the utilization of crisp probabilities in assessing uncertainty. The present study is aimed at alleviating this drawback by developing a Fuzzy Bayesian Network (FBN) methodology to deal more effectively with uncertainty. Using expert elicitation and fuzzy theory to determine probabilities, FBN employs the same reasoning and inference algorithms of conventional BN for predictive analysis and probability updating. A comparison between the results of FBN and BN, especially in critically analysis of root events, shows the outperformance of FBN in providing more detailed, transparent and realistic results." @default.
- W2899117996 created "2018-11-09" @default.
- W2899117996 creator A5012854945 @default.
- W2899117996 creator A5041543612 @default.
- W2899117996 creator A5057907060 @default.
- W2899117996 creator A5086790937 @default.
- W2899117996 date "2019-01-01" @default.
- W2899117996 modified "2023-10-16" @default.
- W2899117996 title "Safety analysis of process systems using Fuzzy Bayesian Network (FBN)" @default.
- W2899117996 cites W1971997334 @default.
- W2899117996 cites W1974813904 @default.
- W2899117996 cites W1976102130 @default.
- W2899117996 cites W1982235682 @default.
- W2899117996 cites W1987716036 @default.
- W2899117996 cites W2003722051 @default.
- W2899117996 cites W2006396931 @default.
- W2899117996 cites W2014155899 @default.
- W2899117996 cites W2026554835 @default.
- W2899117996 cites W2038196039 @default.
- W2899117996 cites W2039799510 @default.
- W2899117996 cites W2042568049 @default.
- W2899117996 cites W2043089065 @default.
- W2899117996 cites W2044891983 @default.
- W2899117996 cites W2047428665 @default.
- W2899117996 cites W2055860907 @default.
- W2899117996 cites W2063670268 @default.
- W2899117996 cites W2064072957 @default.
- W2899117996 cites W2066940772 @default.
- W2899117996 cites W2069644413 @default.
- W2899117996 cites W2074369200 @default.
- W2899117996 cites W2086668606 @default.
- W2899117996 cites W2091543438 @default.
- W2899117996 cites W2109552086 @default.
- W2899117996 cites W2142390508 @default.
- W2899117996 cites W2143636474 @default.
- W2899117996 cites W2151882426 @default.
- W2899117996 cites W2162465503 @default.
- W2899117996 cites W2163961586 @default.
- W2899117996 cites W2529702177 @default.
- W2899117996 cites W2579555219 @default.
- W2899117996 cites W2606220091 @default.
- W2899117996 cites W2750050145 @default.
- W2899117996 cites W2755885017 @default.
- W2899117996 cites W2789479919 @default.
- W2899117996 cites W2791889912 @default.
- W2899117996 cites W2792294252 @default.
- W2899117996 cites W4211007335 @default.
- W2899117996 cites W4248996458 @default.
- W2899117996 doi "https://doi.org/10.1016/j.jlp.2018.10.011" @default.
- W2899117996 hasPublicationYear "2019" @default.
- W2899117996 type Work @default.
- W2899117996 sameAs 2899117996 @default.
- W2899117996 citedByCount "137" @default.
- W2899117996 countsByYear W28991179962019 @default.
- W2899117996 countsByYear W28991179962020 @default.
- W2899117996 countsByYear W28991179962021 @default.
- W2899117996 countsByYear W28991179962022 @default.
- W2899117996 countsByYear W28991179962023 @default.
- W2899117996 crossrefType "journal-article" @default.
- W2899117996 hasAuthorship W2899117996A5012854945 @default.
- W2899117996 hasAuthorship W2899117996A5041543612 @default.
- W2899117996 hasAuthorship W2899117996A5057907060 @default.
- W2899117996 hasAuthorship W2899117996A5086790937 @default.
- W2899117996 hasConcept C107094494 @default.
- W2899117996 hasConcept C107673813 @default.
- W2899117996 hasConcept C111919701 @default.
- W2899117996 hasConcept C112930515 @default.
- W2899117996 hasConcept C119857082 @default.
- W2899117996 hasConcept C12174686 @default.
- W2899117996 hasConcept C124101348 @default.
- W2899117996 hasConcept C127413603 @default.
- W2899117996 hasConcept C154945302 @default.
- W2899117996 hasConcept C160234255 @default.
- W2899117996 hasConcept C177803969 @default.
- W2899117996 hasConcept C200601418 @default.
- W2899117996 hasConcept C2776214188 @default.
- W2899117996 hasConcept C33724603 @default.
- W2899117996 hasConcept C38652104 @default.
- W2899117996 hasConcept C41008148 @default.
- W2899117996 hasConcept C44154836 @default.
- W2899117996 hasConcept C58166 @default.
- W2899117996 hasConcept C71924100 @default.
- W2899117996 hasConcept C98045186 @default.
- W2899117996 hasConceptScore W2899117996C107094494 @default.
- W2899117996 hasConceptScore W2899117996C107673813 @default.
- W2899117996 hasConceptScore W2899117996C111919701 @default.
- W2899117996 hasConceptScore W2899117996C112930515 @default.
- W2899117996 hasConceptScore W2899117996C119857082 @default.
- W2899117996 hasConceptScore W2899117996C12174686 @default.
- W2899117996 hasConceptScore W2899117996C124101348 @default.
- W2899117996 hasConceptScore W2899117996C127413603 @default.
- W2899117996 hasConceptScore W2899117996C154945302 @default.
- W2899117996 hasConceptScore W2899117996C160234255 @default.
- W2899117996 hasConceptScore W2899117996C177803969 @default.
- W2899117996 hasConceptScore W2899117996C200601418 @default.
- W2899117996 hasConceptScore W2899117996C2776214188 @default.
- W2899117996 hasConceptScore W2899117996C33724603 @default.
- W2899117996 hasConceptScore W2899117996C38652104 @default.