Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899161804> ?p ?o ?g. }
- W2899161804 endingPage "276" @default.
- W2899161804 startingPage "267" @default.
- W2899161804 abstract "The widespread application of data-driven factorization-based methods, such as independent component analysis (ICA), to functional magnetic resonance imaging data facilitates the study of neural function and how it is disrupted by psychiatric disorders such as schizophrenia. While the increasing number of these methods motivates a comparison of their relative performance, such a comparison is difficult to perform on real fMRI data, since the ground truth is, relatively, unknown and the alignment of factors across different methods is impractical and imprecise. We present a novel method, global difference maps (GDMs), to compare the results of different fMRI analysis techniques on real fMRI data, quantify their relative performances, and highlight the differences between the decompositions visually. We apply this method to compare the performances of two different factorization-based methods, ICA and its multiset extension independent vector analysis (IVA), for the analysis of fMRI data from 109 patients with schizophrenia and 138 healthy controls during the performance of three tasks. Through this application of GDMs, we find that IVA can determine regions that are more discriminatory between patients and controls than ICA, though IVA is less effective at emphasizing regions found in only a subset of the tasks. These results demonstrate that GDMs are an effective way to compare the performances of different factorization-based methods as well as regression-based analyses." @default.
- W2899161804 created "2018-11-09" @default.
- W2899161804 creator A5027564445 @default.
- W2899161804 creator A5032850756 @default.
- W2899161804 creator A5060798483 @default.
- W2899161804 date "2019-01-01" @default.
- W2899161804 modified "2023-10-16" @default.
- W2899161804 title "A method to compare the discriminatory power of data-driven methods: Application to ICA and IVA" @default.
- W2899161804 cites W1513100438 @default.
- W2899161804 cites W1539811621 @default.
- W2899161804 cites W1582893002 @default.
- W2899161804 cites W1933095430 @default.
- W2899161804 cites W1963616747 @default.
- W2899161804 cites W1963842630 @default.
- W2899161804 cites W1964819812 @default.
- W2899161804 cites W1977125063 @default.
- W2899161804 cites W1978161337 @default.
- W2899161804 cites W1983407432 @default.
- W2899161804 cites W1985327120 @default.
- W2899161804 cites W1990700907 @default.
- W2899161804 cites W1991840148 @default.
- W2899161804 cites W2001735625 @default.
- W2899161804 cites W2001870301 @default.
- W2899161804 cites W2002870962 @default.
- W2899161804 cites W2003449088 @default.
- W2899161804 cites W2009635874 @default.
- W2899161804 cites W2011017829 @default.
- W2899161804 cites W2014849676 @default.
- W2899161804 cites W2016444985 @default.
- W2899161804 cites W2021019869 @default.
- W2899161804 cites W2022679851 @default.
- W2899161804 cites W2025844008 @default.
- W2899161804 cites W2027017271 @default.
- W2899161804 cites W2037436900 @default.
- W2899161804 cites W2040736479 @default.
- W2899161804 cites W2041182153 @default.
- W2899161804 cites W2045851706 @default.
- W2899161804 cites W2056465968 @default.
- W2899161804 cites W2064464200 @default.
- W2899161804 cites W2071190900 @default.
- W2899161804 cites W2071631554 @default.
- W2899161804 cites W2072522618 @default.
- W2899161804 cites W2074117397 @default.
- W2899161804 cites W2076669446 @default.
- W2899161804 cites W2079549965 @default.
- W2899161804 cites W2081110264 @default.
- W2899161804 cites W2082207932 @default.
- W2899161804 cites W2082930697 @default.
- W2899161804 cites W2084301006 @default.
- W2899161804 cites W2091177453 @default.
- W2899161804 cites W2091278087 @default.
- W2899161804 cites W2091991315 @default.
- W2899161804 cites W2093224093 @default.
- W2899161804 cites W2093313017 @default.
- W2899161804 cites W2095035528 @default.
- W2899161804 cites W2096052879 @default.
- W2899161804 cites W2098945231 @default.
- W2899161804 cites W2099159042 @default.
- W2899161804 cites W2108384452 @default.
- W2899161804 cites W2122066039 @default.
- W2899161804 cites W2129256542 @default.
- W2899161804 cites W2131036748 @default.
- W2899161804 cites W2136065080 @default.
- W2899161804 cites W2136284422 @default.
- W2899161804 cites W2139949772 @default.
- W2899161804 cites W2141224535 @default.
- W2899161804 cites W2145424836 @default.
- W2899161804 cites W2147332554 @default.
- W2899161804 cites W2149966221 @default.
- W2899161804 cites W2153417835 @default.
- W2899161804 cites W2162615138 @default.
- W2899161804 cites W2163722029 @default.
- W2899161804 cites W2165955750 @default.
- W2899161804 cites W2254883979 @default.
- W2899161804 cites W2258742283 @default.
- W2899161804 cites W2330647764 @default.
- W2899161804 cites W2354785768 @default.
- W2899161804 cites W2593331880 @default.
- W2899161804 cites W2735317774 @default.
- W2899161804 cites W2964304793 @default.
- W2899161804 cites W4231923904 @default.
- W2899161804 cites W4380030747 @default.
- W2899161804 cites W46718429 @default.
- W2899161804 doi "https://doi.org/10.1016/j.jneumeth.2018.10.008" @default.
- W2899161804 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6258321" @default.
- W2899161804 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30389489" @default.
- W2899161804 hasPublicationYear "2019" @default.
- W2899161804 type Work @default.
- W2899161804 sameAs 2899161804 @default.
- W2899161804 citedByCount "4" @default.
- W2899161804 countsByYear W28991618042022 @default.
- W2899161804 countsByYear W28991618042023 @default.
- W2899161804 crossrefType "journal-article" @default.
- W2899161804 hasAuthorship W2899161804A5027564445 @default.
- W2899161804 hasAuthorship W2899161804A5032850756 @default.
- W2899161804 hasAuthorship W2899161804A5060798483 @default.
- W2899161804 hasBestOaLocation W28991618042 @default.
- W2899161804 hasConcept C114614502 @default.