Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899165782> ?p ?o ?g. }
- W2899165782 endingPage "24" @default.
- W2899165782 startingPage "1" @default.
- W2899165782 abstract "Nonnegative matrix factorization (NMF) is one widely used feature extraction technology in the tasks of image clustering and image classification. For the former task, various unsupervised NMF methods based on the data distribution structure information have been proposed. While for the latter task, the label information of the dataset is one very important guiding. However, most previous proposed supervised NMF methods emphasis on imposing the discriminant constraints on the coefficient matrix. When dealing with new coming samples, the transpose or the pseudoinverse of the basis matrix is used to project these samples to the low dimension space. In this way, the label influence to the basis matrix is indirect. Although, there are also some methods trying to constrain the basis matrix in NMF framework, either they only restrict within-class samples or impose improper constraint on the basis matrix. To address these problems, in this article a novel NMF framework named discriminative and orthogonal subspace constraints-based nonnegative matrix factorization (DOSNMF) is proposed. In DOSNMF, the discriminative constraints are imposed on the projected subspace instead of the directly learned representation. In this manner, the discriminative information is directly connected with the projected subspace. At the same time, an orthogonal term is incorporated in DOSNMF to adjust the orthogonality of the learned basis matrix, which can ensure the orthogonality of the learned subspace and improve the sparseness of the basis matrix at the same time. This framework can be implemented in two ways. The first way is based on the manifold learning theory. In this way, two graphs, i.e., the intrinsic graph and the penalty graph, are constructed to capture the intra-class structure and the inter-class distinctness. With this design, both the manifold structure information and the discriminative information of the dataset are utilized. For convenience, we name this method as the name of the framework, i.e., DOSNMF. The second way is based on the Fisher’s criterion, we name it Fisher’s criterion-based DOSNMF (FDOSNMF). The objective functions of DOSNMF and FDOSNMF can be easily optimized using multiplicative update (MU) rules. The new methods are tested on five datasets and compared with several supervised and unsupervised variants of NMF. The experimental results reveal the effectiveness of the proposed methods." @default.
- W2899165782 created "2018-11-09" @default.
- W2899165782 creator A5062388461 @default.
- W2899165782 creator A5065389363 @default.
- W2899165782 creator A5068918243 @default.
- W2899165782 date "2018-11-01" @default.
- W2899165782 modified "2023-09-26" @default.
- W2899165782 title "Discriminative and Orthogonal Subspace Constraints-Based Nonnegative Matrix Factorization" @default.
- W2899165782 cites W1966644764 @default.
- W2899165782 cites W1966999409 @default.
- W2899165782 cites W1968698180 @default.
- W2899165782 cites W2002182716 @default.
- W2899165782 cites W2002370809 @default.
- W2899165782 cites W2021275963 @default.
- W2899165782 cites W2026982506 @default.
- W2899165782 cites W2029343251 @default.
- W2899165782 cites W2058406265 @default.
- W2899165782 cites W2094100186 @default.
- W2899165782 cites W2102967859 @default.
- W2899165782 cites W2104819583 @default.
- W2899165782 cites W2108119513 @default.
- W2899165782 cites W2116216716 @default.
- W2899165782 cites W2136171036 @default.
- W2899165782 cites W2136948085 @default.
- W2899165782 cites W2142584058 @default.
- W2899165782 cites W2142621404 @default.
- W2899165782 cites W2144719328 @default.
- W2899165782 cites W2162316550 @default.
- W2899165782 cites W2188599881 @default.
- W2899165782 cites W2313416037 @default.
- W2899165782 cites W2399812666 @default.
- W2899165782 cites W2492307518 @default.
- W2899165782 cites W2494395359 @default.
- W2899165782 cites W2559014097 @default.
- W2899165782 cites W2572852038 @default.
- W2899165782 cites W2605809234 @default.
- W2899165782 cites W2739770654 @default.
- W2899165782 cites W2741379673 @default.
- W2899165782 cites W2749238013 @default.
- W2899165782 cites W2755583212 @default.
- W2899165782 cites W83066537 @default.
- W2899165782 cites W2619931353 @default.
- W2899165782 doi "https://doi.org/10.1145/3229051" @default.
- W2899165782 hasPublicationYear "2018" @default.
- W2899165782 type Work @default.
- W2899165782 sameAs 2899165782 @default.
- W2899165782 citedByCount "6" @default.
- W2899165782 countsByYear W28991657822019 @default.
- W2899165782 countsByYear W28991657822020 @default.
- W2899165782 countsByYear W28991657822021 @default.
- W2899165782 countsByYear W28991657822022 @default.
- W2899165782 crossrefType "journal-article" @default.
- W2899165782 hasAuthorship W2899165782A5062388461 @default.
- W2899165782 hasAuthorship W2899165782A5065389363 @default.
- W2899165782 hasAuthorship W2899165782A5068918243 @default.
- W2899165782 hasConcept C106487976 @default.
- W2899165782 hasConcept C121332964 @default.
- W2899165782 hasConcept C12426560 @default.
- W2899165782 hasConcept C152671427 @default.
- W2899165782 hasConcept C153180895 @default.
- W2899165782 hasConcept C154945302 @default.
- W2899165782 hasConcept C158693339 @default.
- W2899165782 hasConcept C159985019 @default.
- W2899165782 hasConcept C17137986 @default.
- W2899165782 hasConcept C192562407 @default.
- W2899165782 hasConcept C2524010 @default.
- W2899165782 hasConcept C32834561 @default.
- W2899165782 hasConcept C33923547 @default.
- W2899165782 hasConcept C41008148 @default.
- W2899165782 hasConcept C42355184 @default.
- W2899165782 hasConcept C62520636 @default.
- W2899165782 hasConcept C97931131 @default.
- W2899165782 hasConceptScore W2899165782C106487976 @default.
- W2899165782 hasConceptScore W2899165782C121332964 @default.
- W2899165782 hasConceptScore W2899165782C12426560 @default.
- W2899165782 hasConceptScore W2899165782C152671427 @default.
- W2899165782 hasConceptScore W2899165782C153180895 @default.
- W2899165782 hasConceptScore W2899165782C154945302 @default.
- W2899165782 hasConceptScore W2899165782C158693339 @default.
- W2899165782 hasConceptScore W2899165782C159985019 @default.
- W2899165782 hasConceptScore W2899165782C17137986 @default.
- W2899165782 hasConceptScore W2899165782C192562407 @default.
- W2899165782 hasConceptScore W2899165782C2524010 @default.
- W2899165782 hasConceptScore W2899165782C32834561 @default.
- W2899165782 hasConceptScore W2899165782C33923547 @default.
- W2899165782 hasConceptScore W2899165782C41008148 @default.
- W2899165782 hasConceptScore W2899165782C42355184 @default.
- W2899165782 hasConceptScore W2899165782C62520636 @default.
- W2899165782 hasConceptScore W2899165782C97931131 @default.
- W2899165782 hasFunder F4320321001 @default.
- W2899165782 hasIssue "6" @default.
- W2899165782 hasLocation W28991657821 @default.
- W2899165782 hasOpenAccess W2899165782 @default.
- W2899165782 hasPrimaryLocation W28991657821 @default.
- W2899165782 hasRelatedWork W1619305369 @default.
- W2899165782 hasRelatedWork W2098732751 @default.
- W2899165782 hasRelatedWork W2149838895 @default.
- W2899165782 hasRelatedWork W2321141263 @default.