Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899168122> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2899168122 abstract "Microsoft Windows products receive huge amount of feedback across different channels. The amount of feedback received monthly around 11 K, which is humanly inefficient to analyze. When user issues a technical query (e.g., connect projector in win 10) on Bing search engine, it shows an answer (e.g., steps to connect to projector in Windows 10) to user query. These answers are created by content author’s team. The triggering team shows the relevant answer for a user query. When users are not satisfied with the answer, they might provide feedback. It is very crucial to understand user feedback to improve user experience. The existing approach to analyze user feedback is to go through each piece of feedback and assign it to right team for resolution. This approach is laborious, expensive and does not scale well. We proposed an approach, which understands user query, answer, and feedback and automatically categorize the verbatim feedback into one of the following three categories: authors, triggering, irrelevant (Junk). The classified feedback is routed to the respective team. We trained a supervised machine learning classifier to perform feedback classification. We have extracted different features from query, answer, and user feedback. Our features composed of bag-of-n-grams extracted from verbatim feedback and deep semantic structured model (DSSM) score between query and answer title. We have achieved 82% classification accuracy using support vector machine (SVM) algorithm. This classifier has been improved over the time. Our approach reduced huge amount of manual work. The proposed solution also helped in reduction of dissatisfaction ration (internal success measure) by 2%, which indicates the enhancement in overall user experience with tech answers." @default.
- W2899168122 created "2018-11-09" @default.
- W2899168122 creator A5007238836 @default.
- W2899168122 creator A5010402075 @default.
- W2899168122 date "2018-11-05" @default.
- W2899168122 modified "2023-09-24" @default.
- W2899168122 title "Automatic Classification of Bing Answers User Verbatim Feedback" @default.
- W2899168122 cites W2129018774 @default.
- W2899168122 cites W2136189984 @default.
- W2899168122 doi "https://doi.org/10.1007/978-981-13-1580-0_43" @default.
- W2899168122 hasPublicationYear "2018" @default.
- W2899168122 type Work @default.
- W2899168122 sameAs 2899168122 @default.
- W2899168122 citedByCount "0" @default.
- W2899168122 crossrefType "book-chapter" @default.
- W2899168122 hasAuthorship W2899168122A5007238836 @default.
- W2899168122 hasAuthorship W2899168122A5010402075 @default.
- W2899168122 hasConcept C107457646 @default.
- W2899168122 hasConcept C115961682 @default.
- W2899168122 hasConcept C119857082 @default.
- W2899168122 hasConcept C12267149 @default.
- W2899168122 hasConcept C124101348 @default.
- W2899168122 hasConcept C154945302 @default.
- W2899168122 hasConcept C1667742 @default.
- W2899168122 hasConcept C23123220 @default.
- W2899168122 hasConcept C2779532271 @default.
- W2899168122 hasConcept C41008148 @default.
- W2899168122 hasConcept C94124525 @default.
- W2899168122 hasConcept C95623464 @default.
- W2899168122 hasConceptScore W2899168122C107457646 @default.
- W2899168122 hasConceptScore W2899168122C115961682 @default.
- W2899168122 hasConceptScore W2899168122C119857082 @default.
- W2899168122 hasConceptScore W2899168122C12267149 @default.
- W2899168122 hasConceptScore W2899168122C124101348 @default.
- W2899168122 hasConceptScore W2899168122C154945302 @default.
- W2899168122 hasConceptScore W2899168122C1667742 @default.
- W2899168122 hasConceptScore W2899168122C23123220 @default.
- W2899168122 hasConceptScore W2899168122C2779532271 @default.
- W2899168122 hasConceptScore W2899168122C41008148 @default.
- W2899168122 hasConceptScore W2899168122C94124525 @default.
- W2899168122 hasConceptScore W2899168122C95623464 @default.
- W2899168122 hasLocation W28991681221 @default.
- W2899168122 hasOpenAccess W2899168122 @default.
- W2899168122 hasPrimaryLocation W28991681221 @default.
- W2899168122 hasRelatedWork W1982718731 @default.
- W2899168122 hasRelatedWork W1984989304 @default.
- W2899168122 hasRelatedWork W1987859285 @default.
- W2899168122 hasRelatedWork W2024137774 @default.
- W2899168122 hasRelatedWork W2033863811 @default.
- W2899168122 hasRelatedWork W2144276270 @default.
- W2899168122 hasRelatedWork W2595988085 @default.
- W2899168122 hasRelatedWork W2923685453 @default.
- W2899168122 hasRelatedWork W3177064837 @default.
- W2899168122 hasRelatedWork W4226030017 @default.
- W2899168122 isParatext "false" @default.
- W2899168122 isRetracted "false" @default.
- W2899168122 magId "2899168122" @default.
- W2899168122 workType "book-chapter" @default.