Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899170201> ?p ?o ?g. }
- W2899170201 endingPage "304" @default.
- W2899170201 startingPage "294" @default.
- W2899170201 abstract "Diagnostic performance of deep learning-based algorithms in screening patients with diabetes for diabetic retinopathy (DR). The algorithms were compared with the current gold standard of classification by human specialists.Because DR is a common cause of visual impairment, screening is indicated to avoid irreversible vision loss. Automated DR classification using deep learning may be a suitable new screening tool that could improve diagnostic performance and reduce manpower.For this systematic review, we aimed to identify studies that incorporated the use of deep learning in classifying full-scale DR in retinal fundus images of patients with diabetes. The studies had to provide a DR grading scale, a human grader as a reference standard, and a deep learning performance score. A systematic search on April 5, 2018, through MEDLINE and Embase yielded 304 publications. To identify potentially missed publications, the reference lists of the final included studies were manually screened, yielding no additional publications. The Quality Assessment of Diagnostic Accuracy Studies 2 tool was used for risk of bias and applicability assessment.By using objective selection, we included 11 diagnostic accuracy studies that validated the performance of their deep learning method using a new group of patients or retrospective datasets. Eight studies reported sensitivity and specificity of 80.28% to 100.0% and 84.0% to 99.0%, respectively. Two studies report accuracies of 78.7% and 81.0%. One study provides an area under the receiver operating curve of 0.955. In addition to diagnostic performance, one study also reported on patient satisfaction, showing that 78% of patients preferred an automated deep learning model over manual human grading.Advantages of implementing deep learning-based algorithms in DR screening include reduction in manpower, cost of screening, and issues relating to intragrader and intergrader variability. However, limitations that may hinder such an implementation particularly revolve around ethical concerns regarding lack of trust in the diagnostic accuracy of computers. Considering both strengths and limitations, as well as the high performance of deep learning-based algorithms, automated DR classification using deep learning could be feasible in a real-world screening scenario." @default.
- W2899170201 created "2018-11-09" @default.
- W2899170201 creator A5016422421 @default.
- W2899170201 creator A5024861911 @default.
- W2899170201 creator A5047817064 @default.
- W2899170201 creator A5066567815 @default.
- W2899170201 creator A5069935355 @default.
- W2899170201 date "2019-04-01" @default.
- W2899170201 modified "2023-10-16" @default.
- W2899170201 title "Deep Learning–Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance" @default.
- W2899170201 cites W1982390886 @default.
- W2899170201 cites W1993413260 @default.
- W2899170201 cites W2041693724 @default.
- W2899170201 cites W2059962988 @default.
- W2899170201 cites W2062393305 @default.
- W2899170201 cites W2085456980 @default.
- W2899170201 cites W2107638293 @default.
- W2899170201 cites W2109662030 @default.
- W2899170201 cites W2169242575 @default.
- W2899170201 cites W2287206980 @default.
- W2899170201 cites W2478594936 @default.
- W2899170201 cites W2529153069 @default.
- W2899170201 cites W2557738935 @default.
- W2899170201 cites W2558381168 @default.
- W2899170201 cites W2561588396 @default.
- W2899170201 cites W2598442119 @default.
- W2899170201 cites W2640386719 @default.
- W2899170201 cites W2751724847 @default.
- W2899170201 cites W2751818590 @default.
- W2899170201 cites W2753056288 @default.
- W2899170201 cites W2759821517 @default.
- W2899170201 cites W2772246530 @default.
- W2899170201 cites W2785704959 @default.
- W2899170201 cites W2793079232 @default.
- W2899170201 cites W2919115771 @default.
- W2899170201 cites W2952436003 @default.
- W2899170201 cites W4244478258 @default.
- W2899170201 doi "https://doi.org/10.1016/j.oret.2018.10.014" @default.
- W2899170201 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31014679" @default.
- W2899170201 hasPublicationYear "2019" @default.
- W2899170201 type Work @default.
- W2899170201 sameAs 2899170201 @default.
- W2899170201 citedByCount "63" @default.
- W2899170201 countsByYear W28991702012019 @default.
- W2899170201 countsByYear W28991702012020 @default.
- W2899170201 countsByYear W28991702012021 @default.
- W2899170201 countsByYear W28991702012022 @default.
- W2899170201 countsByYear W28991702012023 @default.
- W2899170201 crossrefType "journal-article" @default.
- W2899170201 hasAuthorship W2899170201A5016422421 @default.
- W2899170201 hasAuthorship W2899170201A5024861911 @default.
- W2899170201 hasAuthorship W2899170201A5047817064 @default.
- W2899170201 hasAuthorship W2899170201A5066567815 @default.
- W2899170201 hasAuthorship W2899170201A5069935355 @default.
- W2899170201 hasBestOaLocation W28991702012 @default.
- W2899170201 hasConcept C108583219 @default.
- W2899170201 hasConcept C11413529 @default.
- W2899170201 hasConcept C118487528 @default.
- W2899170201 hasConcept C119767625 @default.
- W2899170201 hasConcept C119857082 @default.
- W2899170201 hasConcept C126322002 @default.
- W2899170201 hasConcept C127413603 @default.
- W2899170201 hasConcept C134018914 @default.
- W2899170201 hasConcept C141071460 @default.
- W2899170201 hasConcept C147176958 @default.
- W2899170201 hasConcept C154945302 @default.
- W2899170201 hasConcept C17744445 @default.
- W2899170201 hasConcept C19527891 @default.
- W2899170201 hasConcept C199539241 @default.
- W2899170201 hasConcept C2776391266 @default.
- W2899170201 hasConcept C2777286243 @default.
- W2899170201 hasConcept C2779473830 @default.
- W2899170201 hasConcept C2779829184 @default.
- W2899170201 hasConcept C2993012660 @default.
- W2899170201 hasConcept C3020132585 @default.
- W2899170201 hasConcept C40993552 @default.
- W2899170201 hasConcept C41008148 @default.
- W2899170201 hasConcept C555293320 @default.
- W2899170201 hasConcept C58471807 @default.
- W2899170201 hasConcept C71924100 @default.
- W2899170201 hasConceptScore W2899170201C108583219 @default.
- W2899170201 hasConceptScore W2899170201C11413529 @default.
- W2899170201 hasConceptScore W2899170201C118487528 @default.
- W2899170201 hasConceptScore W2899170201C119767625 @default.
- W2899170201 hasConceptScore W2899170201C119857082 @default.
- W2899170201 hasConceptScore W2899170201C126322002 @default.
- W2899170201 hasConceptScore W2899170201C127413603 @default.
- W2899170201 hasConceptScore W2899170201C134018914 @default.
- W2899170201 hasConceptScore W2899170201C141071460 @default.
- W2899170201 hasConceptScore W2899170201C147176958 @default.
- W2899170201 hasConceptScore W2899170201C154945302 @default.
- W2899170201 hasConceptScore W2899170201C17744445 @default.
- W2899170201 hasConceptScore W2899170201C19527891 @default.
- W2899170201 hasConceptScore W2899170201C199539241 @default.
- W2899170201 hasConceptScore W2899170201C2776391266 @default.
- W2899170201 hasConceptScore W2899170201C2777286243 @default.
- W2899170201 hasConceptScore W2899170201C2779473830 @default.
- W2899170201 hasConceptScore W2899170201C2779829184 @default.