Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899187130> ?p ?o ?g. }
- W2899187130 endingPage "255" @default.
- W2899187130 startingPage "234" @default.
- W2899187130 abstract "A data-space inversion (DSI) method is developed and applied to quantify uncertainty in the location of CO2 plumes in the top layer of a storage aquifer. In the DSI procedure, posterior predictions of the CO2 saturation distribution are generated using simulation results for prior geostatistical model realizations along with observed data, which in this case derive from observations at monitoring wells. Posterior (history-matched) geological models are not constructed in the DSI method, so many of the complications that arise in traditional data assimilation methods are avoided. The DSI method treats quantities of interest (QoI), such as the CO2 saturation distribution in the top layer, as random variables. The posterior distribution for these QoI, conditioned to observed data, is formulated in the data space within a Bayesian framework. Samples from this posterior distribution are generated using the randomized maximum likelihood method. We also introduce a procedure to optimize the locations of monitoring wells using only prior-model simulation results. This approach is based on analytical DSI results, and determines monitoring well locations such that the reduction in expected posterior variance of a relevant quantity is maximized. The new DSI procedure is applied to three-dimensional heterogeneous aquifer models involving uncertainties in a wide range of geological parameters, including variogram orientation, porosity and permeability fields, and regional pressure gradient. Multiple monitoring scenarios, involving four to eight monitoring wells, are considered in the evaluation of our data space methodology. Application of DSI with optimal monitoring wells is shown to consistently reduce the posterior variance of average CO2 saturation in the top layer, and to provide detailed saturation fields in reasonable correspondence with the ‘true’ saturation distribution. Finally, we demonstrate consistent improvement in DSI predictions as data are collected from an increasing number of (optimized) monitoring wells." @default.
- W2899187130 created "2018-11-09" @default.
- W2899187130 creator A5002057296 @default.
- W2899187130 creator A5067960423 @default.
- W2899187130 date "2019-01-01" @default.
- W2899187130 modified "2023-10-17" @default.
- W2899187130 title "Data-space approaches for uncertainty quantification of CO2 plume location in geological carbon storage" @default.
- W2899187130 cites W1556778625 @default.
- W2899187130 cites W1900850489 @default.
- W2899187130 cites W1995952828 @default.
- W2899187130 cites W1996118086 @default.
- W2899187130 cites W2001944555 @default.
- W2899187130 cites W2009104157 @default.
- W2899187130 cites W2018353504 @default.
- W2899187130 cites W2022044778 @default.
- W2899187130 cites W2026440939 @default.
- W2899187130 cites W2031172850 @default.
- W2899187130 cites W2043468239 @default.
- W2899187130 cites W2046372107 @default.
- W2899187130 cites W2054917359 @default.
- W2899187130 cites W2058051865 @default.
- W2899187130 cites W2065323491 @default.
- W2899187130 cites W2078327207 @default.
- W2899187130 cites W2094991982 @default.
- W2899187130 cites W2100921809 @default.
- W2899187130 cites W2102277009 @default.
- W2899187130 cites W2117170950 @default.
- W2899187130 cites W2132452358 @default.
- W2899187130 cites W2135305615 @default.
- W2899187130 cites W2148411410 @default.
- W2899187130 cites W2149852178 @default.
- W2899187130 cites W2156164149 @default.
- W2899187130 cites W2163824141 @default.
- W2899187130 cites W2168052004 @default.
- W2899187130 cites W2184598964 @default.
- W2899187130 cites W2470614038 @default.
- W2899187130 cites W2571304633 @default.
- W2899187130 cites W2581526618 @default.
- W2899187130 cites W2581984441 @default.
- W2899187130 cites W2600422184 @default.
- W2899187130 cites W2733830335 @default.
- W2899187130 cites W2750958183 @default.
- W2899187130 cites W2769142751 @default.
- W2899187130 cites W2784046638 @default.
- W2899187130 cites W2790523310 @default.
- W2899187130 cites W2796019171 @default.
- W2899187130 cites W2803396148 @default.
- W2899187130 cites W977619832 @default.
- W2899187130 doi "https://doi.org/10.1016/j.advwatres.2018.10.028" @default.
- W2899187130 hasPublicationYear "2019" @default.
- W2899187130 type Work @default.
- W2899187130 sameAs 2899187130 @default.
- W2899187130 citedByCount "25" @default.
- W2899187130 countsByYear W28991871302019 @default.
- W2899187130 countsByYear W28991871302020 @default.
- W2899187130 countsByYear W28991871302021 @default.
- W2899187130 countsByYear W28991871302022 @default.
- W2899187130 countsByYear W28991871302023 @default.
- W2899187130 crossrefType "journal-article" @default.
- W2899187130 hasAuthorship W2899187130A5002057296 @default.
- W2899187130 hasAuthorship W2899187130A5067960423 @default.
- W2899187130 hasConcept C105795698 @default.
- W2899187130 hasConcept C107673813 @default.
- W2899187130 hasConcept C109007969 @default.
- W2899187130 hasConcept C11413529 @default.
- W2899187130 hasConcept C120882062 @default.
- W2899187130 hasConcept C121332964 @default.
- W2899187130 hasConcept C125572338 @default.
- W2899187130 hasConcept C127313418 @default.
- W2899187130 hasConcept C151730666 @default.
- W2899187130 hasConcept C153294291 @default.
- W2899187130 hasConcept C154881674 @default.
- W2899187130 hasConcept C159390177 @default.
- W2899187130 hasConcept C1893757 @default.
- W2899187130 hasConcept C24552861 @default.
- W2899187130 hasConcept C32230216 @default.
- W2899187130 hasConcept C33923547 @default.
- W2899187130 hasConcept C39432304 @default.
- W2899187130 hasConcept C41625074 @default.
- W2899187130 hasConcept C54355233 @default.
- W2899187130 hasConcept C57830394 @default.
- W2899187130 hasConcept C81692654 @default.
- W2899187130 hasConcept C86803240 @default.
- W2899187130 hasConcept C94747663 @default.
- W2899187130 hasConceptScore W2899187130C105795698 @default.
- W2899187130 hasConceptScore W2899187130C107673813 @default.
- W2899187130 hasConceptScore W2899187130C109007969 @default.
- W2899187130 hasConceptScore W2899187130C11413529 @default.
- W2899187130 hasConceptScore W2899187130C120882062 @default.
- W2899187130 hasConceptScore W2899187130C121332964 @default.
- W2899187130 hasConceptScore W2899187130C125572338 @default.
- W2899187130 hasConceptScore W2899187130C127313418 @default.
- W2899187130 hasConceptScore W2899187130C151730666 @default.
- W2899187130 hasConceptScore W2899187130C153294291 @default.
- W2899187130 hasConceptScore W2899187130C154881674 @default.
- W2899187130 hasConceptScore W2899187130C159390177 @default.
- W2899187130 hasConceptScore W2899187130C1893757 @default.
- W2899187130 hasConceptScore W2899187130C24552861 @default.