Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899189342> ?p ?o ?g. }
- W2899189342 endingPage "722" @default.
- W2899189342 startingPage "714" @default.
- W2899189342 abstract "Assessing heavy metal pollution in river sediments and identifying the key factors contributing to metal pollution are critical components for devising river environmental protection and remediation strategies to protect human and ecological health. This is especially important in urban areas where metals from a wide range of sources contribute to sediment pollution. In this study, the metal enrichment factor (EF) was used to measure the watershed distribution of Cu, Zn, Pb and Cd in sediments in the Wen-Rui Tang urban river system in Wenzhou, Eastern China. The Geographical Detector Method (GDM) was specifically evaluated for its ability to analyze spatial relationships between metal EFs and their anthropogenic and natural control factors, including densities of industry (DI), livestock (DL), service industries (DS), population (DP), and roads (DR), along with agricultural area (AG), sediment total organic carbon (TOC), and soil types (ST). Results showed that the watershed was highly contaminated by all metals with an EF trend of Cd ≫ Zn > Cu > Pb. The spatial distribution of EFs demonstrated high contamination of all metals in the southwestern region of the watershed where industrial activities were concentrated, and higher Cu and Zn concentrations in the northeastern region having a high density of livestock production. GDM results identified DI as the dominant determinant for all metals, while TOC and ST were determined to have a moderate secondary influence for Zn, Pb and Cd. Additionally, GDM revealed several additive and nonlinear interactions between anthropogenic and natural factors influencing metal concentrations. Compared to other correlation, multiple linear regression and geographically weighted regression, GDM demonstrated distinct advantages of being able to assess both categorical and continuous variables and determine both single and multiple factor interactions. These attributes provide a more comprehensive understanding of metal spatial distributions while avoiding multicollinearity issues when identifying significant contributing factors at the watershed scale." @default.
- W2899189342 created "2018-11-09" @default.
- W2899189342 creator A5004586541 @default.
- W2899189342 creator A5008182146 @default.
- W2899189342 creator A5023323053 @default.
- W2899189342 creator A5025904134 @default.
- W2899189342 creator A5036547657 @default.
- W2899189342 creator A5039203181 @default.
- W2899189342 creator A5039537374 @default.
- W2899189342 creator A5044274879 @default.
- W2899189342 creator A5057994349 @default.
- W2899189342 creator A5059394611 @default.
- W2899189342 creator A5059622174 @default.
- W2899189342 creator A5067439693 @default.
- W2899189342 date "2019-02-01" @default.
- W2899189342 modified "2023-10-16" @default.
- W2899189342 title "Assessment of the Geographical Detector Method for investigating heavy metal source apportionment in an urban watershed of Eastern China" @default.
- W2899189342 cites W1569508120 @default.
- W2899189342 cites W1590444350 @default.
- W2899189342 cites W1971853600 @default.
- W2899189342 cites W1979677452 @default.
- W2899189342 cites W1982116679 @default.
- W2899189342 cites W1985993075 @default.
- W2899189342 cites W1993759471 @default.
- W2899189342 cites W2001092000 @default.
- W2899189342 cites W2024375818 @default.
- W2899189342 cites W2040913879 @default.
- W2899189342 cites W2042978279 @default.
- W2899189342 cites W2044817310 @default.
- W2899189342 cites W2045691614 @default.
- W2899189342 cites W2048694130 @default.
- W2899189342 cites W2050966108 @default.
- W2899189342 cites W2051197471 @default.
- W2899189342 cites W2053085157 @default.
- W2899189342 cites W2056476608 @default.
- W2899189342 cites W2057385899 @default.
- W2899189342 cites W2063517221 @default.
- W2899189342 cites W2070959883 @default.
- W2899189342 cites W2071890583 @default.
- W2899189342 cites W2073756366 @default.
- W2899189342 cites W2075562517 @default.
- W2899189342 cites W2078632297 @default.
- W2899189342 cites W2079489686 @default.
- W2899189342 cites W2080108958 @default.
- W2899189342 cites W2080551892 @default.
- W2899189342 cites W2084032127 @default.
- W2899189342 cites W2088364728 @default.
- W2899189342 cites W2096675104 @default.
- W2899189342 cites W2124515580 @default.
- W2899189342 cites W2129370357 @default.
- W2899189342 cites W2149897302 @default.
- W2899189342 cites W2163283323 @default.
- W2899189342 cites W2343188872 @default.
- W2899189342 cites W2407374040 @default.
- W2899189342 cites W2427824082 @default.
- W2899189342 cites W2510398919 @default.
- W2899189342 cites W2511581002 @default.
- W2899189342 cites W2581671730 @default.
- W2899189342 cites W2586531664 @default.
- W2899189342 cites W2587892995 @default.
- W2899189342 cites W2591842355 @default.
- W2899189342 cites W2599411706 @default.
- W2899189342 cites W2620238341 @default.
- W2899189342 cites W2735211907 @default.
- W2899189342 cites W2739089901 @default.
- W2899189342 cites W2758392315 @default.
- W2899189342 cites W2789632935 @default.
- W2899189342 cites W2794219571 @default.
- W2899189342 cites W2803951730 @default.
- W2899189342 doi "https://doi.org/10.1016/j.scitotenv.2018.10.424" @default.
- W2899189342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30759597" @default.
- W2899189342 hasPublicationYear "2019" @default.
- W2899189342 type Work @default.
- W2899189342 sameAs 2899189342 @default.
- W2899189342 citedByCount "68" @default.
- W2899189342 countsByYear W28991893422019 @default.
- W2899189342 countsByYear W28991893422020 @default.
- W2899189342 countsByYear W28991893422021 @default.
- W2899189342 countsByYear W28991893422022 @default.
- W2899189342 countsByYear W28991893422023 @default.
- W2899189342 crossrefType "journal-article" @default.
- W2899189342 hasAuthorship W2899189342A5004586541 @default.
- W2899189342 hasAuthorship W2899189342A5008182146 @default.
- W2899189342 hasAuthorship W2899189342A5023323053 @default.
- W2899189342 hasAuthorship W2899189342A5025904134 @default.
- W2899189342 hasAuthorship W2899189342A5036547657 @default.
- W2899189342 hasAuthorship W2899189342A5039203181 @default.
- W2899189342 hasAuthorship W2899189342A5039537374 @default.
- W2899189342 hasAuthorship W2899189342A5044274879 @default.
- W2899189342 hasAuthorship W2899189342A5057994349 @default.
- W2899189342 hasAuthorship W2899189342A5059394611 @default.
- W2899189342 hasAuthorship W2899189342A5059622174 @default.
- W2899189342 hasAuthorship W2899189342A5067439693 @default.
- W2899189342 hasBestOaLocation W28991893422 @default.
- W2899189342 hasConcept C107872376 @default.
- W2899189342 hasConcept C112570922 @default.
- W2899189342 hasConcept C119857082 @default.
- W2899189342 hasConcept C127313418 @default.