Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899202378> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2899202378 endingPage "89" @default.
- W2899202378 startingPage "78" @default.
- W2899202378 abstract "Abstract Autonomous virtual agents that operate in complex IoT environments and apply machine learning algorithms face two fundamental challenges: (i) they usually lack sufficient start-up knowledge and (ii) hence are incapable to adequately adjust their internal knowledge base and decision-making policies during runtime to meet specific user requirements and preferences. This is problematic in Ambient Assisted Living (AAL) and Health-Care (HC) scenarios, since an agent has to expediently operate from the beginning of its lifecycle and adequately address the target users’ needs; without prior user and environmental knowledge, this is not possible. The presented approach addresses these problems by providing a semantic use-case simulation framework that can be tailored to specific AAL and HC use cases. It builds upon a semantic knowledge representation framework to simulate device events and user activities based on semantic task and ambient descriptions. Through such a simulated environment, agents are provided with the ability to learn the best matching actions and to adjust their policies based on generated datasets. We demonstrate the practical applicability of the simulation framework through the evaluation of the chronic kidney disease pathway from the vCare EC project. Thereby, we proof that an agent that uses reinforcement learning (RL) is able to improve its performance during and after the training and thus makes optimal (activity) recommendations to a prospective patient." @default.
- W2899202378 created "2018-11-09" @default.
- W2899202378 creator A5010053102 @default.
- W2899202378 creator A5048073397 @default.
- W2899202378 date "2018-01-01" @default.
- W2899202378 modified "2023-10-03" @default.
- W2899202378 title "Using a Semantic Simulation Framework for Teaching Machine Learning Agents." @default.
- W2899202378 hasPublicationYear "2018" @default.
- W2899202378 type Work @default.
- W2899202378 sameAs 2899202378 @default.
- W2899202378 citedByCount "0" @default.
- W2899202378 crossrefType "journal-article" @default.
- W2899202378 hasAuthorship W2899202378A5010053102 @default.
- W2899202378 hasAuthorship W2899202378A5048073397 @default.
- W2899202378 hasConcept C107457646 @default.
- W2899202378 hasConcept C115903868 @default.
- W2899202378 hasConcept C119857082 @default.
- W2899202378 hasConcept C127413603 @default.
- W2899202378 hasConcept C154945302 @default.
- W2899202378 hasConcept C17744445 @default.
- W2899202378 hasConcept C184337299 @default.
- W2899202378 hasConcept C199360897 @default.
- W2899202378 hasConcept C199539241 @default.
- W2899202378 hasConcept C201995342 @default.
- W2899202378 hasConcept C2776359362 @default.
- W2899202378 hasConcept C2780451532 @default.
- W2899202378 hasConcept C41008148 @default.
- W2899202378 hasConcept C4554734 @default.
- W2899202378 hasConcept C94625758 @default.
- W2899202378 hasConcept C97541855 @default.
- W2899202378 hasConceptScore W2899202378C107457646 @default.
- W2899202378 hasConceptScore W2899202378C115903868 @default.
- W2899202378 hasConceptScore W2899202378C119857082 @default.
- W2899202378 hasConceptScore W2899202378C127413603 @default.
- W2899202378 hasConceptScore W2899202378C154945302 @default.
- W2899202378 hasConceptScore W2899202378C17744445 @default.
- W2899202378 hasConceptScore W2899202378C184337299 @default.
- W2899202378 hasConceptScore W2899202378C199360897 @default.
- W2899202378 hasConceptScore W2899202378C199539241 @default.
- W2899202378 hasConceptScore W2899202378C201995342 @default.
- W2899202378 hasConceptScore W2899202378C2776359362 @default.
- W2899202378 hasConceptScore W2899202378C2780451532 @default.
- W2899202378 hasConceptScore W2899202378C41008148 @default.
- W2899202378 hasConceptScore W2899202378C4554734 @default.
- W2899202378 hasConceptScore W2899202378C94625758 @default.
- W2899202378 hasConceptScore W2899202378C97541855 @default.
- W2899202378 hasLocation W28992023781 @default.
- W2899202378 hasOpenAccess W2899202378 @default.
- W2899202378 hasPrimaryLocation W28992023781 @default.
- W2899202378 hasRelatedWork W1180520 @default.
- W2899202378 hasRelatedWork W1523147132 @default.
- W2899202378 hasRelatedWork W1526546431 @default.
- W2899202378 hasRelatedWork W1981167494 @default.
- W2899202378 hasRelatedWork W1981264738 @default.
- W2899202378 hasRelatedWork W202315022 @default.
- W2899202378 hasRelatedWork W2045440224 @default.
- W2899202378 hasRelatedWork W2135937807 @default.
- W2899202378 hasRelatedWork W2250772490 @default.
- W2899202378 hasRelatedWork W2313435117 @default.
- W2899202378 hasRelatedWork W2555257864 @default.
- W2899202378 hasRelatedWork W2606618799 @default.
- W2899202378 hasRelatedWork W2892700141 @default.
- W2899202378 hasRelatedWork W2896538881 @default.
- W2899202378 hasRelatedWork W2900306731 @default.
- W2899202378 hasRelatedWork W2902133175 @default.
- W2899202378 hasRelatedWork W295540708 @default.
- W2899202378 hasRelatedWork W2955731002 @default.
- W2899202378 hasRelatedWork W2991470717 @default.
- W2899202378 hasRelatedWork W1946267528 @default.
- W2899202378 isParatext "false" @default.
- W2899202378 isRetracted "false" @default.
- W2899202378 magId "2899202378" @default.
- W2899202378 workType "article" @default.