Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899240031> ?p ?o ?g. }
- W2899240031 endingPage "42" @default.
- W2899240031 startingPage "33" @default.
- W2899240031 abstract "It is well-documented that fungicides can affect crustacean leaf shredders via two effect pathways, namely waterborne exposure and their diet (i.e., via dietary uptake of fungicides adsorbed to leaf material and an altered microorganism-mediated food quality). As a consequence of different life history strategies, the relevance of these effect pathways for aquatic shredders belonging to other taxonomic classes, for instance insects, remains unclear. Therefore, we investigated waterborne and diet-related effects in larvae of the caddisfly leaf shredder Chaetopteryx villosa (Insecta: Trichoptera) and compared our observations to previous reports on effects in adults of the crustacean leaf shredder Gammarus fossarum (Malacostraca: Amphipoda). We assessed acute waterborne effects of an organic fungicide mixture (OFM) and the inorganic fungicide copper (Cu) on the leaf consumption (n = 30) of the fourth-/fifth-instar larvae of C. villosa and their food choice (n = 49) when offered leaf material, which was either conditioned in presence or in absence of the respective fungicide(s). Moreover, the larval leaf consumption (n = 50) and physiological fitness (i.e., growth as well as lipid and protein content) were examined after subjecting C. villosa for 24 days towards the combination of both effect pathways at environmentally relevant concentrations. G. fossarum and C. villosa exhibited similar sensitivities and the same effect direction when exposed to the OFM (either waterborne or dietary pathways). Both shredders also showed the same effect direction when exposed to dietary Cu, while with regards to mortality and leaf consumption C. villosa was less sensitive to waterborne Cu than G. fossarum. Finally, as observed for G. fossarum, the combined exposure to OFM over 24 days negatively affected leaf consumption and the physiology (i.e., growth and lipid reserves) of C. villosa. While no combined Cu effects were observed for larval leaf consumption, contrasting to the observations for G. fossarum, the physiology of both shredders was negatively affected, despite partly differing effect sizes and directions. Our results suggest that C. villosa and G. fossarum are of comparable sensitivity towards waterborne and diet-related organic fungicide exposure, whereas the trichopteran is less sensitive to Cu-based waterborne fungicide exposure. However, when both pathways act jointly, organic and inorganic fungicides can affect the physiology of shredder species with completely different life history strategies. As caddisflies represent a subsidy for terrestrial consumers, these observations indicate that fungicide exposure might not only affect aquatic ecosystem functioning but also the flux of energy across ecosystem boundaries." @default.
- W2899240031 created "2018-11-09" @default.
- W2899240031 creator A5017328299 @default.
- W2899240031 creator A5057550326 @default.
- W2899240031 creator A5071560364 @default.
- W2899240031 creator A5073442435 @default.
- W2899240031 creator A5074401116 @default.
- W2899240031 creator A5077303747 @default.
- W2899240031 creator A5078500831 @default.
- W2899240031 date "2019-01-01" @default.
- W2899240031 modified "2023-09-23" @default.
- W2899240031 title "Waterborne and diet-related effects of inorganic and organic fungicides on the insect leaf shredder Chaetopteryx villosa (Trichoptera)" @default.
- W2899240031 cites W1197494779 @default.
- W2899240031 cites W1557012625 @default.
- W2899240031 cites W1595515891 @default.
- W2899240031 cites W1963959706 @default.
- W2899240031 cites W1978051677 @default.
- W2899240031 cites W1982912324 @default.
- W2899240031 cites W1983815011 @default.
- W2899240031 cites W1987826414 @default.
- W2899240031 cites W1988716838 @default.
- W2899240031 cites W1991980710 @default.
- W2899240031 cites W1995325806 @default.
- W2899240031 cites W1996326993 @default.
- W2899240031 cites W2005936485 @default.
- W2899240031 cites W2006332236 @default.
- W2899240031 cites W2007372063 @default.
- W2899240031 cites W2013323473 @default.
- W2899240031 cites W2024632759 @default.
- W2899240031 cites W2030732620 @default.
- W2899240031 cites W2040908439 @default.
- W2899240031 cites W2041147502 @default.
- W2899240031 cites W2043008322 @default.
- W2899240031 cites W2044758532 @default.
- W2899240031 cites W2049765178 @default.
- W2899240031 cites W2049795405 @default.
- W2899240031 cites W2052525362 @default.
- W2899240031 cites W2055120261 @default.
- W2899240031 cites W2059662240 @default.
- W2899240031 cites W2061210435 @default.
- W2899240031 cites W2062074275 @default.
- W2899240031 cites W2065906647 @default.
- W2899240031 cites W2066564855 @default.
- W2899240031 cites W2067677959 @default.
- W2899240031 cites W2070204283 @default.
- W2899240031 cites W2082613733 @default.
- W2899240031 cites W2082830673 @default.
- W2899240031 cites W2083922030 @default.
- W2899240031 cites W2093245339 @default.
- W2899240031 cites W2095916852 @default.
- W2899240031 cites W2096646749 @default.
- W2899240031 cites W2101236430 @default.
- W2899240031 cites W2107498496 @default.
- W2899240031 cites W2118301067 @default.
- W2899240031 cites W2123790263 @default.
- W2899240031 cites W2132608555 @default.
- W2899240031 cites W2139861447 @default.
- W2899240031 cites W2146596987 @default.
- W2899240031 cites W2149645437 @default.
- W2899240031 cites W2152965975 @default.
- W2899240031 cites W2158989404 @default.
- W2899240031 cites W2163926894 @default.
- W2899240031 cites W2170878738 @default.
- W2899240031 cites W2171604061 @default.
- W2899240031 cites W2182856193 @default.
- W2899240031 cites W2258918916 @default.
- W2899240031 cites W2266145512 @default.
- W2899240031 cites W2291397961 @default.
- W2899240031 cites W2316506131 @default.
- W2899240031 cites W2327756554 @default.
- W2899240031 cites W2332249701 @default.
- W2899240031 cites W2489910389 @default.
- W2899240031 cites W2523407764 @default.
- W2899240031 cites W2565099515 @default.
- W2899240031 cites W2610297457 @default.
- W2899240031 cites W2618207078 @default.
- W2899240031 cites W2920017816 @default.
- W2899240031 cites W321302442 @default.
- W2899240031 cites W4235608415 @default.
- W2899240031 cites W823876566 @default.
- W2899240031 doi "https://doi.org/10.1016/j.aquatox.2018.10.021" @default.
- W2899240031 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30445370" @default.
- W2899240031 hasPublicationYear "2019" @default.
- W2899240031 type Work @default.
- W2899240031 sameAs 2899240031 @default.
- W2899240031 citedByCount "6" @default.
- W2899240031 countsByYear W28992400312020 @default.
- W2899240031 countsByYear W28992400312021 @default.
- W2899240031 countsByYear W28992400312023 @default.
- W2899240031 crossrefType "journal-article" @default.
- W2899240031 hasAuthorship W2899240031A5017328299 @default.
- W2899240031 hasAuthorship W2899240031A5057550326 @default.
- W2899240031 hasAuthorship W2899240031A5071560364 @default.
- W2899240031 hasAuthorship W2899240031A5073442435 @default.
- W2899240031 hasAuthorship W2899240031A5074401116 @default.
- W2899240031 hasAuthorship W2899240031A5077303747 @default.
- W2899240031 hasAuthorship W2899240031A5078500831 @default.
- W2899240031 hasConcept C173758957 @default.