Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899248894> ?p ?o ?g. }
- W2899248894 endingPage "306" @default.
- W2899248894 startingPage "287" @default.
- W2899248894 abstract "In systems biology, the dynamics of biological networks are often modeled with ordinary differential equations (ODEs) that encode interacting components in the systems, resulting in highly complex models. In contrast, the amount of experimentally available data is almost always limited, and insufficient to constrain the parameters. In this situation, parameter estimation is a very challenging problem. To address this challenge, two intuitive approaches are to perform experimental design to generate more data, and to perform model reduction to simplify the model. Experimental design and model reduction have been traditionally viewed as two distinct areas, and an extensive literature and excellent reviews exist on each of the two areas. Intriguingly, however, the intrinsic connections between the two areas have not been recognized. Experimental design and model reduction are deeply related, and can be considered as one unified framework. There are two recent methods that can tackle both areas, one based on model manifold and the other based on profile likelihood. We use a simple sum-of-two-exponentials example to discuss the concepts and algorithmic details of both methods, and provide Matlab-based code and implementation which are useful resources for the dissemination and adoption of experimental design and model reduction in the biology community. From a geometric perspective, we consider the experimental data as a point in a high-dimensional data space and the mathematical model as a manifold living in this space. Parameter estimation can be viewed as a projection of the data point onto the manifold. By examining the singularity around the projected point on the manifold, we can perform both experimental design and model reduction. Experimental design identifies new experiments that expand the manifold and remove the singularity, whereas model reduction identifies the nearest boundary, which is the nearest singularity that suggests an appropriate form of a reduced model. This geometric interpretation represents one step toward the convergence of experimental design and model reduction as a unified framework." @default.
- W2899248894 created "2018-11-09" @default.
- W2899248894 creator A5041343853 @default.
- W2899248894 creator A5048733359 @default.
- W2899248894 creator A5051281569 @default.
- W2899248894 creator A5064844201 @default.
- W2899248894 creator A5083807807 @default.
- W2899248894 date "2018-10-27" @default.
- W2899248894 modified "2023-09-28" @default.
- W2899248894 title "Experimental design and model reduction in systems biology" @default.
- W2899248894 cites W1484198052 @default.
- W2899248894 cites W1534151975 @default.
- W2899248894 cites W1575978816 @default.
- W2899248894 cites W1969252558 @default.
- W2899248894 cites W1971224531 @default.
- W2899248894 cites W1973996451 @default.
- W2899248894 cites W1975219547 @default.
- W2899248894 cites W1979892077 @default.
- W2899248894 cites W1982009363 @default.
- W2899248894 cites W1983673069 @default.
- W2899248894 cites W1985911638 @default.
- W2899248894 cites W1988093340 @default.
- W2899248894 cites W1988545801 @default.
- W2899248894 cites W2003896572 @default.
- W2899248894 cites W2007728693 @default.
- W2899248894 cites W2011754192 @default.
- W2899248894 cites W2013640963 @default.
- W2899248894 cites W2014382043 @default.
- W2899248894 cites W2016966551 @default.
- W2899248894 cites W2019143734 @default.
- W2899248894 cites W2019264851 @default.
- W2899248894 cites W2023783465 @default.
- W2899248894 cites W2034312218 @default.
- W2899248894 cites W2036693704 @default.
- W2899248894 cites W2038398800 @default.
- W2899248894 cites W2053874495 @default.
- W2899248894 cites W2059145118 @default.
- W2899248894 cites W2062851852 @default.
- W2899248894 cites W2063386545 @default.
- W2899248894 cites W2069647329 @default.
- W2899248894 cites W2079599742 @default.
- W2899248894 cites W2080573473 @default.
- W2899248894 cites W2081240630 @default.
- W2899248894 cites W2082381752 @default.
- W2899248894 cites W2086215140 @default.
- W2899248894 cites W2092652574 @default.
- W2899248894 cites W2092692908 @default.
- W2899248894 cites W2100560953 @default.
- W2899248894 cites W2103776834 @default.
- W2899248894 cites W2104833098 @default.
- W2899248894 cites W2105736780 @default.
- W2899248894 cites W2108744798 @default.
- W2899248894 cites W2109571753 @default.
- W2899248894 cites W2110690917 @default.
- W2899248894 cites W2117191960 @default.
- W2899248894 cites W2117568873 @default.
- W2899248894 cites W2122930146 @default.
- W2899248894 cites W2137152671 @default.
- W2899248894 cites W2137250701 @default.
- W2899248894 cites W2137443247 @default.
- W2899248894 cites W2139864689 @default.
- W2899248894 cites W2143784594 @default.
- W2899248894 cites W2146230717 @default.
- W2899248894 cites W2150476133 @default.
- W2899248894 cites W2151389393 @default.
- W2899248894 cites W2152246075 @default.
- W2899248894 cites W2154601808 @default.
- W2899248894 cites W2165603655 @default.
- W2899248894 cites W2167485946 @default.
- W2899248894 cites W2171112614 @default.
- W2899248894 cites W2267638272 @default.
- W2899248894 cites W2315083496 @default.
- W2899248894 cites W2397519005 @default.
- W2899248894 cites W2515696031 @default.
- W2899248894 cites W2731805355 @default.
- W2899248894 cites W3159077181 @default.
- W2899248894 cites W4238222300 @default.
- W2899248894 cites W4250589301 @default.
- W2899248894 doi "https://doi.org/10.1007/s40484-018-0150-9" @default.
- W2899248894 hasPublicationYear "2018" @default.
- W2899248894 type Work @default.
- W2899248894 sameAs 2899248894 @default.
- W2899248894 citedByCount "10" @default.
- W2899248894 countsByYear W28992488942019 @default.
- W2899248894 countsByYear W28992488942020 @default.
- W2899248894 countsByYear W28992488942021 @default.
- W2899248894 countsByYear W28992488942022 @default.
- W2899248894 countsByYear W28992488942023 @default.
- W2899248894 crossrefType "journal-article" @default.
- W2899248894 hasAuthorship W2899248894A5041343853 @default.
- W2899248894 hasAuthorship W2899248894A5048733359 @default.
- W2899248894 hasAuthorship W2899248894A5051281569 @default.
- W2899248894 hasAuthorship W2899248894A5064844201 @default.
- W2899248894 hasAuthorship W2899248894A5083807807 @default.
- W2899248894 hasBestOaLocation W28992488941 @default.
- W2899248894 hasConcept C111335779 @default.
- W2899248894 hasConcept C127413603 @default.
- W2899248894 hasConcept C152662350 @default.