Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899268189> ?p ?o ?g. }
- W2899268189 endingPage "187" @default.
- W2899268189 startingPage "176" @default.
- W2899268189 abstract "In recent years, weeds is responsible for most of the agricultural yield losses. To deal with this problem Omega, farmers resort to spraying pesticides throughout the field. Such method not only requires huge quantities of herbicides but impact environment and humans health. In this paper, we propose a new vision-based classification system for identifying weeds in vegetable fields such as spinach, beet and bean by applying convolutional neural networks (CNNs) and crop lines information. In this study, we combine deep learning with line detection to enforce the classification procedure. The proposed method is applied to high-resolution Unmanned Aerial Vehicles (UAV) images of vegetables taken about 20 m above the soil. We have performed an extensive evaluation of the method with real data. The results showed that the proposed method of weeds detection was effective in different crop fields. The overall precision for the beet, spinach and bean is respectively of 93%, 81% and 69%." @default.
- W2899268189 created "2018-11-09" @default.
- W2899268189 creator A5049138414 @default.
- W2899268189 creator A5061197809 @default.
- W2899268189 creator A5068195100 @default.
- W2899268189 creator A5086763984 @default.
- W2899268189 date "2018-11-02" @default.
- W2899268189 modified "2023-09-26" @default.
- W2899268189 title "Deep Learning Based Classification System for Identifying Weeds Using High-Resolution UAV Imagery" @default.
- W2899268189 cites W1968930126 @default.
- W2899268189 cites W1973788747 @default.
- W2899268189 cites W1989863789 @default.
- W2899268189 cites W2035759078 @default.
- W2899268189 cites W2041137640 @default.
- W2899268189 cites W2065814573 @default.
- W2899268189 cites W2066312471 @default.
- W2899268189 cites W2074464158 @default.
- W2899268189 cites W2081286693 @default.
- W2899268189 cites W2089040011 @default.
- W2899268189 cites W2091745481 @default.
- W2899268189 cites W2112796928 @default.
- W2899268189 cites W2118246710 @default.
- W2899268189 cites W2161774355 @default.
- W2899268189 cites W2163450852 @default.
- W2899268189 cites W2178852775 @default.
- W2899268189 cites W2243003515 @default.
- W2899268189 cites W2394911398 @default.
- W2899268189 cites W2592893779 @default.
- W2899268189 cites W2737250466 @default.
- W2899268189 cites W2752192487 @default.
- W2899268189 cites W2793809663 @default.
- W2899268189 doi "https://doi.org/10.1007/978-3-030-01177-2_13" @default.
- W2899268189 hasPublicationYear "2018" @default.
- W2899268189 type Work @default.
- W2899268189 sameAs 2899268189 @default.
- W2899268189 citedByCount "16" @default.
- W2899268189 countsByYear W28992681892019 @default.
- W2899268189 countsByYear W28992681892021 @default.
- W2899268189 countsByYear W28992681892022 @default.
- W2899268189 countsByYear W28992681892023 @default.
- W2899268189 crossrefType "book-chapter" @default.
- W2899268189 hasAuthorship W2899268189A5049138414 @default.
- W2899268189 hasAuthorship W2899268189A5061197809 @default.
- W2899268189 hasAuthorship W2899268189A5068195100 @default.
- W2899268189 hasAuthorship W2899268189A5086763984 @default.
- W2899268189 hasConcept C108583219 @default.
- W2899268189 hasConcept C118518473 @default.
- W2899268189 hasConcept C119857082 @default.
- W2899268189 hasConcept C120217122 @default.
- W2899268189 hasConcept C127413603 @default.
- W2899268189 hasConcept C137580998 @default.
- W2899268189 hasConcept C153180895 @default.
- W2899268189 hasConcept C154945302 @default.
- W2899268189 hasConcept C18903297 @default.
- W2899268189 hasConcept C202444582 @default.
- W2899268189 hasConcept C205649164 @default.
- W2899268189 hasConcept C2780054949 @default.
- W2899268189 hasConcept C3020199158 @default.
- W2899268189 hasConcept C33923547 @default.
- W2899268189 hasConcept C41008148 @default.
- W2899268189 hasConcept C62649853 @default.
- W2899268189 hasConcept C81363708 @default.
- W2899268189 hasConcept C86803240 @default.
- W2899268189 hasConcept C88463610 @default.
- W2899268189 hasConcept C9652623 @default.
- W2899268189 hasConcept C97137747 @default.
- W2899268189 hasConceptScore W2899268189C108583219 @default.
- W2899268189 hasConceptScore W2899268189C118518473 @default.
- W2899268189 hasConceptScore W2899268189C119857082 @default.
- W2899268189 hasConceptScore W2899268189C120217122 @default.
- W2899268189 hasConceptScore W2899268189C127413603 @default.
- W2899268189 hasConceptScore W2899268189C137580998 @default.
- W2899268189 hasConceptScore W2899268189C153180895 @default.
- W2899268189 hasConceptScore W2899268189C154945302 @default.
- W2899268189 hasConceptScore W2899268189C18903297 @default.
- W2899268189 hasConceptScore W2899268189C202444582 @default.
- W2899268189 hasConceptScore W2899268189C205649164 @default.
- W2899268189 hasConceptScore W2899268189C2780054949 @default.
- W2899268189 hasConceptScore W2899268189C3020199158 @default.
- W2899268189 hasConceptScore W2899268189C33923547 @default.
- W2899268189 hasConceptScore W2899268189C41008148 @default.
- W2899268189 hasConceptScore W2899268189C62649853 @default.
- W2899268189 hasConceptScore W2899268189C81363708 @default.
- W2899268189 hasConceptScore W2899268189C86803240 @default.
- W2899268189 hasConceptScore W2899268189C88463610 @default.
- W2899268189 hasConceptScore W2899268189C9652623 @default.
- W2899268189 hasConceptScore W2899268189C97137747 @default.
- W2899268189 hasLocation W28992681891 @default.
- W2899268189 hasLocation W28992681892 @default.
- W2899268189 hasLocation W28992681893 @default.
- W2899268189 hasOpenAccess W2899268189 @default.
- W2899268189 hasPrimaryLocation W28992681891 @default.
- W2899268189 hasRelatedWork W2731899572 @default.
- W2899268189 hasRelatedWork W2999805992 @default.
- W2899268189 hasRelatedWork W3116150086 @default.
- W2899268189 hasRelatedWork W3133861977 @default.
- W2899268189 hasRelatedWork W4200173597 @default.
- W2899268189 hasRelatedWork W4223943233 @default.