Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899284949> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2899284949 abstract "Heart sounds recognition is essential for heart defects diagnosis. Diagnosis of structural heart defects is not always possible using the contemporary stethoscope and need further assessment using high cost devices such as X-ray, electrocardiogram (ECG), echocardiography (ECHO) and computed tomography (CT)). Automatic computer assisted auscultation may be used as a clinical decision support tool. In an attempt to develop an automatic computer aided diagnostic modality for heart conditions that is sensitive, specific, non-invasive we created two automatic computer cardiac auscultation (ACCA) models that provide heart sound analysis and we aimed to improve the sensitivity and correct classification rate (CCR) of recognition of heart sounds, thus we developed model A ACCA recognition system (machine learning (interpreter independent)) and model B ACCA recognition system (machine learning and interpreter dependent visual analysis). We used machine learning based on mel frequency cepestral coefficients as a feature and Hidden Markov Model (HMM) as a classifier. We performed visual analysis based on phonocardiography (PCG) and spectrogram image. Model A ACCA demonstrated 97% CCR, 99.2% sensitivity and specificity 100% and model B ACCA demonstrated 98.2% CCR and 99.2% sensitivity and specificity 100%. ACCA models A and B allow reliable interpretation of recognised sounds to detect underlying structural defects." @default.
- W2899284949 created "2018-11-09" @default.
- W2899284949 creator A5011164638 @default.
- W2899284949 creator A5045425207 @default.
- W2899284949 creator A5057780157 @default.
- W2899284949 creator A5060123092 @default.
- W2899284949 creator A5083066875 @default.
- W2899284949 creator A5089047129 @default.
- W2899284949 date "2018-11-02" @default.
- W2899284949 modified "2023-10-14" @default.
- W2899284949 title "Recognition of Heart Murmur Based on Machine Learning and Visual Based Analysis of Phonocardiography" @default.
- W2899284949 cites W1867483269 @default.
- W2899284949 cites W1967390037 @default.
- W2899284949 cites W2036215557 @default.
- W2899284949 cites W2041575375 @default.
- W2899284949 cites W2086928409 @default.
- W2899284949 cites W2112174483 @default.
- W2899284949 cites W2125835915 @default.
- W2899284949 doi "https://doi.org/10.1007/978-3-030-01177-2_14" @default.
- W2899284949 hasPublicationYear "2018" @default.
- W2899284949 type Work @default.
- W2899284949 sameAs 2899284949 @default.
- W2899284949 citedByCount "0" @default.
- W2899284949 crossrefType "book-chapter" @default.
- W2899284949 hasAuthorship W2899284949A5011164638 @default.
- W2899284949 hasAuthorship W2899284949A5045425207 @default.
- W2899284949 hasAuthorship W2899284949A5057780157 @default.
- W2899284949 hasAuthorship W2899284949A5060123092 @default.
- W2899284949 hasAuthorship W2899284949A5083066875 @default.
- W2899284949 hasAuthorship W2899284949A5089047129 @default.
- W2899284949 hasConcept C119857082 @default.
- W2899284949 hasConcept C126838900 @default.
- W2899284949 hasConcept C127413603 @default.
- W2899284949 hasConcept C153180895 @default.
- W2899284949 hasConcept C154945302 @default.
- W2899284949 hasConcept C164705383 @default.
- W2899284949 hasConcept C21200559 @default.
- W2899284949 hasConcept C23224414 @default.
- W2899284949 hasConcept C24326235 @default.
- W2899284949 hasConcept C2777324038 @default.
- W2899284949 hasConcept C2779055095 @default.
- W2899284949 hasConcept C2779435589 @default.
- W2899284949 hasConcept C28490314 @default.
- W2899284949 hasConcept C41008148 @default.
- W2899284949 hasConcept C71924100 @default.
- W2899284949 hasConcept C95623464 @default.
- W2899284949 hasConceptScore W2899284949C119857082 @default.
- W2899284949 hasConceptScore W2899284949C126838900 @default.
- W2899284949 hasConceptScore W2899284949C127413603 @default.
- W2899284949 hasConceptScore W2899284949C153180895 @default.
- W2899284949 hasConceptScore W2899284949C154945302 @default.
- W2899284949 hasConceptScore W2899284949C164705383 @default.
- W2899284949 hasConceptScore W2899284949C21200559 @default.
- W2899284949 hasConceptScore W2899284949C23224414 @default.
- W2899284949 hasConceptScore W2899284949C24326235 @default.
- W2899284949 hasConceptScore W2899284949C2777324038 @default.
- W2899284949 hasConceptScore W2899284949C2779055095 @default.
- W2899284949 hasConceptScore W2899284949C2779435589 @default.
- W2899284949 hasConceptScore W2899284949C28490314 @default.
- W2899284949 hasConceptScore W2899284949C41008148 @default.
- W2899284949 hasConceptScore W2899284949C71924100 @default.
- W2899284949 hasConceptScore W2899284949C95623464 @default.
- W2899284949 hasLocation W28992849491 @default.
- W2899284949 hasOpenAccess W2899284949 @default.
- W2899284949 hasPrimaryLocation W28992849491 @default.
- W2899284949 hasRelatedWork W1970628933 @default.
- W2899284949 hasRelatedWork W1980860850 @default.
- W2899284949 hasRelatedWork W2010662891 @default.
- W2899284949 hasRelatedWork W2011507645 @default.
- W2899284949 hasRelatedWork W2062210329 @default.
- W2899284949 hasRelatedWork W2063247359 @default.
- W2899284949 hasRelatedWork W2101079765 @default.
- W2899284949 hasRelatedWork W2765735872 @default.
- W2899284949 hasRelatedWork W2810055424 @default.
- W2899284949 hasRelatedWork W852376913 @default.
- W2899284949 isParatext "false" @default.
- W2899284949 isRetracted "false" @default.
- W2899284949 magId "2899284949" @default.
- W2899284949 workType "book-chapter" @default.