Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899297243> ?p ?o ?g. }
- W2899297243 endingPage "393" @default.
- W2899297243 startingPage "382" @default.
- W2899297243 abstract "Purpose Intensity‐modulated proton therapy ( IMPT ) is known to be sensitive to patient setup and range uncertainty issues. Multiple robust optimization methods have been developed to mitigate the impact of these uncertainties. Here, we propose a new robust optimization method, which provides an alternative way of robust optimization in IMPT , and is clinically practical, which will enable users to control the balance between nominal plan quality and plan robustness in a user‐defined fashion. Method We calculated nine individual dose distributions which corresponded to one nominal and eight extreme scenarios caused by patient setup and proton beam's range uncertainties. For each voxel, the normalized dose interval ( NDI ) is defined as the full dose range variation divided by the maximum dose in all uncertainty scenarios ( NDI = [max – min dose]/max dose), which was then used to calculate the normalized dose interval volume histogram ( NDIVH ) curves. The areas under the NDIVH curves were used to quantify plan robustness. A normalized dose interval volume constraint ( NDIVC ) applied to the target was incorporated to specify the desired robustness which was user‐defined. Users could then explore the trade‐off between nominal plan quality and plan robustness by adjusting the position of the NDIVC s on the NDIVH curves freely. We benchmarked our method using one lung, five head and neck (H&N), and three prostate cases by comparing our results to those derived using the voxel‐wise worst‐case robust optimization. Results Using the benchmark cases, our new method achieved quality IMPT plans comparable to those derived from the voxel‐wise worst‐case robust optimization for both nominal plan quality and plan robustness in general; even more conformal and more homogeneous target dose distributions in some cases, if proper NDIVC s were applied. The AUC under NDIVH , as a precise quantitative index of plan robustness, was consistent with DVH bandwidths. Additionally, we demonstrated the feasibility of adjusting the position of NDIVC s in the NDIVH curves which allowed users to explore the trade‐off between nominal plan quality and plan robustness. Conclusions The NDIVH ‐based robust optimization method provided a novel and individualized way of robust optimization in IMPT , and enables users to adjust the balance between nominal plan quality and plan robustness in a user‐defined fashion. This method is applicable for continued improvement and developing the next generation of IMPT planning algorithms in the future." @default.
- W2899297243 created "2018-11-09" @default.
- W2899297243 creator A5025580085 @default.
- W2899297243 creator A5032470889 @default.
- W2899297243 creator A5062848479 @default.
- W2899297243 creator A5071037763 @default.
- W2899297243 creator A5079583428 @default.
- W2899297243 creator A5091679738 @default.
- W2899297243 date "2018-11-30" @default.
- W2899297243 modified "2023-10-10" @default.
- W2899297243 title "A novel and individualized robust optimization method using normalized dose interval volume constraints (NDIVC) for intensity-modulated proton radiotherapy" @default.
- W2899297243 cites W1479954115 @default.
- W2899297243 cites W1974908209 @default.
- W2899297243 cites W1983273276 @default.
- W2899297243 cites W1989301920 @default.
- W2899297243 cites W1997196401 @default.
- W2899297243 cites W2002922254 @default.
- W2899297243 cites W2011307344 @default.
- W2899297243 cites W2020204678 @default.
- W2899297243 cites W2022549512 @default.
- W2899297243 cites W2024123494 @default.
- W2899297243 cites W2029417726 @default.
- W2899297243 cites W2029775895 @default.
- W2899297243 cites W2031018825 @default.
- W2899297243 cites W2035018217 @default.
- W2899297243 cites W2048842600 @default.
- W2899297243 cites W2051669046 @default.
- W2899297243 cites W2051756045 @default.
- W2899297243 cites W2055233491 @default.
- W2899297243 cites W2056634900 @default.
- W2899297243 cites W2060740081 @default.
- W2899297243 cites W2064712772 @default.
- W2899297243 cites W2066648318 @default.
- W2899297243 cites W2070916900 @default.
- W2899297243 cites W2071962819 @default.
- W2899297243 cites W2080126859 @default.
- W2899297243 cites W2092515499 @default.
- W2899297243 cites W2094591030 @default.
- W2899297243 cites W2094826639 @default.
- W2899297243 cites W2102192086 @default.
- W2899297243 cites W2103101993 @default.
- W2899297243 cites W2138020108 @default.
- W2899297243 cites W2163329967 @default.
- W2899297243 cites W2169056774 @default.
- W2899297243 cites W2212760334 @default.
- W2899297243 cites W2268644431 @default.
- W2899297243 cites W2335991213 @default.
- W2899297243 cites W2473703844 @default.
- W2899297243 cites W2563664032 @default.
- W2899297243 cites W2616792448 @default.
- W2899297243 cites W3104581781 @default.
- W2899297243 doi "https://doi.org/10.1002/mp.13276" @default.
- W2899297243 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30387870" @default.
- W2899297243 hasPublicationYear "2018" @default.
- W2899297243 type Work @default.
- W2899297243 sameAs 2899297243 @default.
- W2899297243 citedByCount "16" @default.
- W2899297243 countsByYear W28992972432019 @default.
- W2899297243 countsByYear W28992972432020 @default.
- W2899297243 countsByYear W28992972432021 @default.
- W2899297243 countsByYear W28992972432022 @default.
- W2899297243 countsByYear W28992972432023 @default.
- W2899297243 crossrefType "journal-article" @default.
- W2899297243 hasAuthorship W2899297243A5025580085 @default.
- W2899297243 hasAuthorship W2899297243A5032470889 @default.
- W2899297243 hasAuthorship W2899297243A5062848479 @default.
- W2899297243 hasAuthorship W2899297243A5071037763 @default.
- W2899297243 hasAuthorship W2899297243A5079583428 @default.
- W2899297243 hasAuthorship W2899297243A5091679738 @default.
- W2899297243 hasConcept C104317684 @default.
- W2899297243 hasConcept C106436119 @default.
- W2899297243 hasConcept C115961682 @default.
- W2899297243 hasConcept C126255220 @default.
- W2899297243 hasConcept C126838900 @default.
- W2899297243 hasConcept C142724271 @default.
- W2899297243 hasConcept C154945302 @default.
- W2899297243 hasConcept C185592680 @default.
- W2899297243 hasConcept C193254401 @default.
- W2899297243 hasConcept C2778618615 @default.
- W2899297243 hasConcept C2779244869 @default.
- W2899297243 hasConcept C2989005 @default.
- W2899297243 hasConcept C33923547 @default.
- W2899297243 hasConcept C41008148 @default.
- W2899297243 hasConcept C509974204 @default.
- W2899297243 hasConcept C53533937 @default.
- W2899297243 hasConcept C54170458 @default.
- W2899297243 hasConcept C55493867 @default.
- W2899297243 hasConcept C63479239 @default.
- W2899297243 hasConcept C71924100 @default.
- W2899297243 hasConcept C75088862 @default.
- W2899297243 hasConceptScore W2899297243C104317684 @default.
- W2899297243 hasConceptScore W2899297243C106436119 @default.
- W2899297243 hasConceptScore W2899297243C115961682 @default.
- W2899297243 hasConceptScore W2899297243C126255220 @default.
- W2899297243 hasConceptScore W2899297243C126838900 @default.
- W2899297243 hasConceptScore W2899297243C142724271 @default.
- W2899297243 hasConceptScore W2899297243C154945302 @default.
- W2899297243 hasConceptScore W2899297243C185592680 @default.