Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899320340> ?p ?o ?g. }
- W2899320340 endingPage "652" @default.
- W2899320340 startingPage "637" @default.
- W2899320340 abstract "In this paper, a novel framework is proposed to enable a predictive deployment of unmanned aerial vehicles (UAVs) as temporary base stations (BSs) to complement ground cellular systems in face of downlink traffic overload. First, a novel learning approach, based on the weighted expectation maximization (WEM) algorithm, is proposed to estimate the user distribution and the downlink traffic demand. Next, to guarantee a truthful information exchange between the BS and UAVs, using the framework of contract theory, an offload contract is developed, and the sufficient and necessary conditions for having a feasible contract are analytically derived. Subsequently, an optimization problem is formulated to deploy an optimal UAV onto the hotspot area in a way that the utility of the overloaded BS is maximized. Simulation results show that the proposed WEM approach yields a prediction error of around 10%. Compared with the expectation maximization and k-mean approaches, the WEM method shows a significant advantage on the prediction accuracy, as the traffic load in the cellular system becomes spatially uneven. Furthermore, compared with two event-driven deployment schemes based on the closest-distance and maximal-energy metrics, the proposed predictive approach enables UAV operators to provide efficient communication service for hotspot users in terms of the downlink capacity, energy consumption and service delay. Simulation results also show that the proposed method significantly improves the revenues of both the BS and UAV networks, compared with two baseline schemes." @default.
- W2899320340 created "2018-11-09" @default.
- W2899320340 creator A5019858998 @default.
- W2899320340 creator A5024108653 @default.
- W2899320340 creator A5037352804 @default.
- W2899320340 creator A5056145687 @default.
- W2899320340 creator A5061429095 @default.
- W2899320340 creator A5083120697 @default.
- W2899320340 date "2021-01-01" @default.
- W2899320340 modified "2023-10-04" @default.
- W2899320340 title "Predictive Deployment of UAV Base Stations in Wireless Networks: Machine Learning Meets Contract Theory" @default.
- W2899320340 cites W1988456768 @default.
- W2899320340 cites W2031834036 @default.
- W2899320340 cites W2289204537 @default.
- W2899320340 cites W2340982237 @default.
- W2899320340 cites W2514674767 @default.
- W2899320340 cites W2525822866 @default.
- W2899320340 cites W2604830243 @default.
- W2899320340 cites W2619209761 @default.
- W2899320340 cites W2645656290 @default.
- W2899320340 cites W2735793369 @default.
- W2899320340 cites W2772265751 @default.
- W2899320340 cites W2790256744 @default.
- W2899320340 cites W2803834024 @default.
- W2899320340 cites W2810640960 @default.
- W2899320340 cites W2912719095 @default.
- W2899320340 cites W2955338161 @default.
- W2899320340 cites W2962684895 @default.
- W2899320340 cites W2962691117 @default.
- W2899320340 cites W2962991278 @default.
- W2899320340 cites W2963389592 @default.
- W2899320340 cites W2963494324 @default.
- W2899320340 cites W2963638537 @default.
- W2899320340 cites W2963686678 @default.
- W2899320340 cites W2963721752 @default.
- W2899320340 cites W2964023906 @default.
- W2899320340 cites W2964220104 @default.
- W2899320340 cites W2964313027 @default.
- W2899320340 cites W2981096252 @default.
- W2899320340 cites W3100608448 @default.
- W2899320340 cites W3102880088 @default.
- W2899320340 doi "https://doi.org/10.1109/twc.2020.3027624" @default.
- W2899320340 hasPublicationYear "2021" @default.
- W2899320340 type Work @default.
- W2899320340 sameAs 2899320340 @default.
- W2899320340 citedByCount "46" @default.
- W2899320340 countsByYear W28993203402020 @default.
- W2899320340 countsByYear W28993203402021 @default.
- W2899320340 countsByYear W28993203402022 @default.
- W2899320340 countsByYear W28993203402023 @default.
- W2899320340 crossrefType "journal-article" @default.
- W2899320340 hasAuthorship W2899320340A5019858998 @default.
- W2899320340 hasAuthorship W2899320340A5024108653 @default.
- W2899320340 hasAuthorship W2899320340A5037352804 @default.
- W2899320340 hasAuthorship W2899320340A5056145687 @default.
- W2899320340 hasAuthorship W2899320340A5061429095 @default.
- W2899320340 hasAuthorship W2899320340A5083120697 @default.
- W2899320340 hasBestOaLocation W28993203401 @default.
- W2899320340 hasConcept C105339364 @default.
- W2899320340 hasConcept C111919701 @default.
- W2899320340 hasConcept C126255220 @default.
- W2899320340 hasConcept C127313418 @default.
- W2899320340 hasConcept C138660444 @default.
- W2899320340 hasConcept C146481406 @default.
- W2899320340 hasConcept C2776330181 @default.
- W2899320340 hasConcept C31258907 @default.
- W2899320340 hasConcept C33923547 @default.
- W2899320340 hasConcept C41008148 @default.
- W2899320340 hasConcept C555944384 @default.
- W2899320340 hasConcept C68649174 @default.
- W2899320340 hasConcept C76155785 @default.
- W2899320340 hasConcept C79403827 @default.
- W2899320340 hasConcept C8058405 @default.
- W2899320340 hasConceptScore W2899320340C105339364 @default.
- W2899320340 hasConceptScore W2899320340C111919701 @default.
- W2899320340 hasConceptScore W2899320340C126255220 @default.
- W2899320340 hasConceptScore W2899320340C127313418 @default.
- W2899320340 hasConceptScore W2899320340C138660444 @default.
- W2899320340 hasConceptScore W2899320340C146481406 @default.
- W2899320340 hasConceptScore W2899320340C2776330181 @default.
- W2899320340 hasConceptScore W2899320340C31258907 @default.
- W2899320340 hasConceptScore W2899320340C33923547 @default.
- W2899320340 hasConceptScore W2899320340C41008148 @default.
- W2899320340 hasConceptScore W2899320340C555944384 @default.
- W2899320340 hasConceptScore W2899320340C68649174 @default.
- W2899320340 hasConceptScore W2899320340C76155785 @default.
- W2899320340 hasConceptScore W2899320340C79403827 @default.
- W2899320340 hasConceptScore W2899320340C8058405 @default.
- W2899320340 hasFunder F4320306076 @default.
- W2899320340 hasFunder F4320321108 @default.
- W2899320340 hasIssue "1" @default.
- W2899320340 hasLocation W28993203401 @default.
- W2899320340 hasLocation W28993203402 @default.
- W2899320340 hasLocation W28993203403 @default.
- W2899320340 hasOpenAccess W2899320340 @default.
- W2899320340 hasPrimaryLocation W28993203401 @default.
- W2899320340 hasRelatedWork W1526745008 @default.
- W2899320340 hasRelatedWork W1577009220 @default.