Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899354153> ?p ?o ?g. }
- W2899354153 endingPage "233" @default.
- W2899354153 startingPage "214" @default.
- W2899354153 abstract "The facultative halophyte Salvadora persica L. grow in arid, semiarid and saline areas. In present study, drought induced alterations in growth, ion homeostasis, photosynthesis, chlorophyll fluorescence, ROS regulation and antioxidative defense components were analyzed in S. persica with an aim to elucidate the drought tolerance mechanisms. In response to drought, significant reductions in growth, photosynthesis, and photosynthetic pigments were observed in S. persica. However, leaf relative water content (RWC %) did not change significantly. In S. persica seedlings, the growth, photosynthetic pigment contents and photosynthesis were resumed to control level within 7 d, when the drought treated plants were re-irrigated. However, quantum yield of PSII (ΦPSII), rate of electron transport (ETR), maximum efficiency of PSII (Fv/Fm), and photochemical quenching (qP) remained unaffected under water deficit stress. The results suggest that both non-stomatal as well as stomatal limitations can account for photosynthetic reduction. The ionomics studies revealed no significant alterations in levels of Na+, K+, Ca2+, B, Cu2+, Fe2+, Mo, and Zn2+ in leaf tissue during drought. However, there was increase in levels of Na+, K+, Ca2+ and Mg2+ in root tissue in response to drought. The activity of different enzymatic antioxidants like SOD, APX, and GR remained unaffected during drought, whereas POX activity increased and CAT activity declined under drought stress in comparison to control. This result proposes that vital ROS scavenging enzymes like SOD, APX and GR are at threshold levels to maintain the appropriate concentration of ROS. In S. persica, the ratio of AsA/DHA and GSH/GSSG (which are the indicators of redox potential of cell) remained steady or increased under drought which indicates that cellular redox level is maintained in this halophyte. Although ROS levels (H2O2 and O2•-) increased significantly under drought stress, electrolyte leakage and lipid peroxidation level remained unchanged in response to water deficit condition which indicates that minimal increase in ROS level under drought stress act in signaling for activation of ROS scavenging enzymes. Our results propose that decline in growth and photosynthesis is a vital energy conservation strategy of S. persica under drought condition. The rapid recovery of growth, photosynthesis and water relations in S. persica following drought seems to be a critical mechanism permitting this plant to withstand and survive under drought environment. In addition, our results implicate that efficient regulations of antioxidative enzymes in leaf tissue contribute in regulating the ROS level and cellular redox status, thereby protecting the plant from drought induced oxidative damage in S. persica. Consequently ion homeostasis, plant water status, and integrity of photosynthetic apparatus is maintained in S. persica subjected to drought. The results of present study propose that S. persica is a drought tolerant halophyte and it can be a potential candidate for restoration of degraded saline lands of coastal ecosystem." @default.
- W2899354153 created "2018-11-09" @default.
- W2899354153 creator A5062903002 @default.
- W2899354153 creator A5077828901 @default.
- W2899354153 creator A5089930971 @default.
- W2899354153 creator A5090986037 @default.
- W2899354153 date "2018-12-01" @default.
- W2899354153 modified "2023-10-13" @default.
- W2899354153 title "Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L." @default.
- W2899354153 cites W1497352192 @default.
- W2899354153 cites W1559623575 @default.
- W2899354153 cites W1863197526 @default.
- W2899354153 cites W1977684683 @default.
- W2899354153 cites W1983173662 @default.
- W2899354153 cites W2009107352 @default.
- W2899354153 cites W2009401584 @default.
- W2899354153 cites W2012850835 @default.
- W2899354153 cites W2013376574 @default.
- W2899354153 cites W2019244742 @default.
- W2899354153 cites W2021251981 @default.
- W2899354153 cites W2022804803 @default.
- W2899354153 cites W2025191472 @default.
- W2899354153 cites W2027841610 @default.
- W2899354153 cites W2039430242 @default.
- W2899354153 cites W2046438098 @default.
- W2899354153 cites W2047218165 @default.
- W2899354153 cites W2050249105 @default.
- W2899354153 cites W2064063768 @default.
- W2899354153 cites W2066006352 @default.
- W2899354153 cites W2068670240 @default.
- W2899354153 cites W2069246613 @default.
- W2899354153 cites W2078554925 @default.
- W2899354153 cites W2085614264 @default.
- W2899354153 cites W2090797251 @default.
- W2899354153 cites W2092732938 @default.
- W2899354153 cites W2094175790 @default.
- W2899354153 cites W2115530390 @default.
- W2899354153 cites W2128830267 @default.
- W2899354153 cites W2134797397 @default.
- W2899354153 cites W2192153937 @default.
- W2899354153 cites W2253907479 @default.
- W2899354153 cites W2275031385 @default.
- W2899354153 cites W2282088110 @default.
- W2899354153 cites W2288365021 @default.
- W2899354153 cites W2290780495 @default.
- W2899354153 cites W2377829699 @default.
- W2899354153 cites W2469993736 @default.
- W2899354153 cites W2471889865 @default.
- W2899354153 cites W2513648733 @default.
- W2899354153 cites W2587827740 @default.
- W2899354153 cites W2605687812 @default.
- W2899354153 cites W2610054082 @default.
- W2899354153 cites W2756241905 @default.
- W2899354153 cites W2756399807 @default.
- W2899354153 cites W2772166321 @default.
- W2899354153 cites W4231523640 @default.
- W2899354153 doi "https://doi.org/10.1016/j.jphotobiol.2018.10.021" @default.
- W2899354153 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30396132" @default.
- W2899354153 hasPublicationYear "2018" @default.
- W2899354153 type Work @default.
- W2899354153 sameAs 2899354153 @default.
- W2899354153 citedByCount "37" @default.
- W2899354153 countsByYear W28993541532019 @default.
- W2899354153 countsByYear W28993541532020 @default.
- W2899354153 countsByYear W28993541532021 @default.
- W2899354153 countsByYear W28993541532022 @default.
- W2899354153 countsByYear W28993541532023 @default.
- W2899354153 crossrefType "journal-article" @default.
- W2899354153 hasAuthorship W2899354153A5062903002 @default.
- W2899354153 hasAuthorship W2899354153A5077828901 @default.
- W2899354153 hasAuthorship W2899354153A5089930971 @default.
- W2899354153 hasAuthorship W2899354153A5090986037 @default.
- W2899354153 hasConcept C104317684 @default.
- W2899354153 hasConcept C111341932 @default.
- W2899354153 hasConcept C129513315 @default.
- W2899354153 hasConcept C130698151 @default.
- W2899354153 hasConcept C144027150 @default.
- W2899354153 hasConcept C183688256 @default.
- W2899354153 hasConcept C185592680 @default.
- W2899354153 hasConcept C18903297 @default.
- W2899354153 hasConcept C189797535 @default.
- W2899354153 hasConcept C24630173 @default.
- W2899354153 hasConcept C2778004101 @default.
- W2899354153 hasConcept C2778979269 @default.
- W2899354153 hasConcept C2779591172 @default.
- W2899354153 hasConcept C2779815552 @default.
- W2899354153 hasConcept C48349386 @default.
- W2899354153 hasConcept C515207424 @default.
- W2899354153 hasConcept C53144768 @default.
- W2899354153 hasConcept C55493867 @default.
- W2899354153 hasConcept C59822182 @default.
- W2899354153 hasConcept C7616482 @default.
- W2899354153 hasConcept C86803240 @default.
- W2899354153 hasConceptScore W2899354153C104317684 @default.
- W2899354153 hasConceptScore W2899354153C111341932 @default.
- W2899354153 hasConceptScore W2899354153C129513315 @default.
- W2899354153 hasConceptScore W2899354153C130698151 @default.
- W2899354153 hasConceptScore W2899354153C144027150 @default.