Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899366772> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2899366772 abstract "Estimation of cell nuclei in images stained for the c-fos protein using immunohistochemistry (IHC) is infeasible in large image sets. Use of multiple human raters to increase throughput often creates variance in the data analysis. Machine learning techniques for biomedical image analysis have been explored for cell-counting in pathology, but their performance on IHC staining, especially to label activated cells in the spinal cord is unknown. In this study, we evaluate different machine learning techniques to segment and count spinal cord neurons that have been active during stepping. We present a qualitative as well as quantitative comparison of algorithmic performance versus two human raters. Quantitative ratings are presented with cell-count statistics and Dice (DSI) scores. We also show the degree of variability between multiple human raters' segmentations and observe that there is a higher degree of variability in segmentations produced by classic machine learning techniques (SVM and Random forest) as compared to the newer deep learning techniques. The work presented here, represents the first steps towards addressing the analysis time bottleneck of large image data sets generated by c-fos IHC staining techniques, a task that would be impossible to do manually." @default.
- W2899366772 created "2018-11-09" @default.
- W2899366772 creator A5010839618 @default.
- W2899366772 creator A5016720311 @default.
- W2899366772 creator A5033867427 @default.
- W2899366772 creator A5055050544 @default.
- W2899366772 creator A5068627403 @default.
- W2899366772 creator A5080722708 @default.
- W2899366772 creator A5081863732 @default.
- W2899366772 date "2018-07-01" @default.
- W2899366772 modified "2023-10-16" @default.
- W2899366772 title "Cell Counting and Segmentation of Immunohistochemical Images in the Spinal Cord: Comparing Deep Learning and Traditional Approaches" @default.
- W2899366772 cites W1903029394 @default.
- W2899366772 cites W1905829557 @default.
- W2899366772 cites W2041866180 @default.
- W2899366772 cites W2044109567 @default.
- W2899366772 cites W2080457512 @default.
- W2899366772 cites W2080828831 @default.
- W2899366772 cites W2097117768 @default.
- W2899366772 cites W2142004558 @default.
- W2899366772 cites W2143046934 @default.
- W2899366772 cites W2153635508 @default.
- W2899366772 cites W2153810084 @default.
- W2899366772 cites W2161969291 @default.
- W2899366772 cites W2504150216 @default.
- W2899366772 cites W2515623609 @default.
- W2899366772 cites W2535733591 @default.
- W2899366772 doi "https://doi.org/10.1109/embc.2018.8512442" @default.
- W2899366772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30440523" @default.
- W2899366772 hasPublicationYear "2018" @default.
- W2899366772 type Work @default.
- W2899366772 sameAs 2899366772 @default.
- W2899366772 citedByCount "8" @default.
- W2899366772 countsByYear W28993667722019 @default.
- W2899366772 countsByYear W28993667722020 @default.
- W2899366772 countsByYear W28993667722021 @default.
- W2899366772 countsByYear W28993667722022 @default.
- W2899366772 crossrefType "proceedings-article" @default.
- W2899366772 hasAuthorship W2899366772A5010839618 @default.
- W2899366772 hasAuthorship W2899366772A5016720311 @default.
- W2899366772 hasAuthorship W2899366772A5033867427 @default.
- W2899366772 hasAuthorship W2899366772A5055050544 @default.
- W2899366772 hasAuthorship W2899366772A5068627403 @default.
- W2899366772 hasAuthorship W2899366772A5080722708 @default.
- W2899366772 hasAuthorship W2899366772A5081863732 @default.
- W2899366772 hasConcept C108583219 @default.
- W2899366772 hasConcept C119857082 @default.
- W2899366772 hasConcept C12267149 @default.
- W2899366772 hasConcept C124504099 @default.
- W2899366772 hasConcept C149635348 @default.
- W2899366772 hasConcept C153180895 @default.
- W2899366772 hasConcept C154945302 @default.
- W2899366772 hasConcept C169258074 @default.
- W2899366772 hasConcept C169760540 @default.
- W2899366772 hasConcept C2780513914 @default.
- W2899366772 hasConcept C2780775167 @default.
- W2899366772 hasConcept C41008148 @default.
- W2899366772 hasConcept C86803240 @default.
- W2899366772 hasConcept C89600930 @default.
- W2899366772 hasConceptScore W2899366772C108583219 @default.
- W2899366772 hasConceptScore W2899366772C119857082 @default.
- W2899366772 hasConceptScore W2899366772C12267149 @default.
- W2899366772 hasConceptScore W2899366772C124504099 @default.
- W2899366772 hasConceptScore W2899366772C149635348 @default.
- W2899366772 hasConceptScore W2899366772C153180895 @default.
- W2899366772 hasConceptScore W2899366772C154945302 @default.
- W2899366772 hasConceptScore W2899366772C169258074 @default.
- W2899366772 hasConceptScore W2899366772C169760540 @default.
- W2899366772 hasConceptScore W2899366772C2780513914 @default.
- W2899366772 hasConceptScore W2899366772C2780775167 @default.
- W2899366772 hasConceptScore W2899366772C41008148 @default.
- W2899366772 hasConceptScore W2899366772C86803240 @default.
- W2899366772 hasConceptScore W2899366772C89600930 @default.
- W2899366772 hasLocation W28993667721 @default.
- W2899366772 hasLocation W28993667722 @default.
- W2899366772 hasOpenAccess W2899366772 @default.
- W2899366772 hasPrimaryLocation W28993667721 @default.
- W2899366772 hasRelatedWork W2754350655 @default.
- W2899366772 hasRelatedWork W2948658236 @default.
- W2899366772 hasRelatedWork W2960184797 @default.
- W2899366772 hasRelatedWork W2972093541 @default.
- W2899366772 hasRelatedWork W2979979539 @default.
- W2899366772 hasRelatedWork W3195168932 @default.
- W2899366772 hasRelatedWork W3211546796 @default.
- W2899366772 hasRelatedWork W4223564025 @default.
- W2899366772 hasRelatedWork W4226246648 @default.
- W2899366772 hasRelatedWork W4281616679 @default.
- W2899366772 isParatext "false" @default.
- W2899366772 isRetracted "false" @default.
- W2899366772 magId "2899366772" @default.
- W2899366772 workType "article" @default.