Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899375613> ?p ?o ?g. }
- W2899375613 abstract "In time-series analysis, state-space models (SSMs) have been widely used to estimate the conditional probability distributions of hidden variables and parameter values, as well as to understand structures that can generate the data. For example, the Kalman filter is used to analytically calculate the conditional probability distribution on linear SSMs in terms of minimizing the variance, and several extensions, such as the unscented Kalman filter and particle filter, have been applied to calculate the approximate distribution on nonlinear SSMs. Recently, the approximate Bayesian computation (ABC) has been applied to such time-series filtering to handle intractable likelihoods; however, it remains problematic with respect to consistently achieving a reduction of the estimation bias, evaluating the validity of the models, and dealing with replicated observations. To address these problems, in this paper, we propose a novel method combined with the kernel ABC to perform filtering, parameter estimation, and the model evaluation in SSMs. Simulation studies show that the proposed method produces inference that is comparable to other ABC methods, with the advantage of not requiring a careful calibration of the ABC threshold. In addition, we evaluate the performance of the model-selection capability using true and competitive models on synthetic data from nonlinear SSMs. Finally, we apply the proposed method to real data in rat circadian oscillations, and demonstrated the usefulness in practical situations." @default.
- W2899375613 created "2018-11-09" @default.
- W2899375613 creator A5016476726 @default.
- W2899375613 creator A5025220924 @default.
- W2899375613 creator A5071376729 @default.
- W2899375613 creator A5072306746 @default.
- W2899375613 date "2018-12-01" @default.
- W2899375613 modified "2023-10-01" @default.
- W2899375613 title "Time-Series Filtering for Replicated Observations via a Kernel Approximate Bayesian Computation" @default.
- W2899375613 cites W1208113704 @default.
- W2899375613 cites W1527470051 @default.
- W2899375613 cites W1540155273 @default.
- W2899375613 cites W1594863551 @default.
- W2899375613 cites W1634905938 @default.
- W2899375613 cites W1963718895 @default.
- W2899375613 cites W2009918934 @default.
- W2899375613 cites W2020934227 @default.
- W2899375613 cites W2034611068 @default.
- W2899375613 cites W2034795216 @default.
- W2899375613 cites W2043105642 @default.
- W2899375613 cites W2045973738 @default.
- W2899375613 cites W2061749710 @default.
- W2899375613 cites W2063220079 @default.
- W2899375613 cites W2077611006 @default.
- W2899375613 cites W2086421081 @default.
- W2899375613 cites W2098613108 @default.
- W2899375613 cites W2105934661 @default.
- W2899375613 cites W2114453981 @default.
- W2899375613 cites W2116416291 @default.
- W2899375613 cites W2117076645 @default.
- W2899375613 cites W2123487311 @default.
- W2899375613 cites W2126351705 @default.
- W2899375613 cites W2128306087 @default.
- W2899375613 cites W2132204276 @default.
- W2899375613 cites W2135267747 @default.
- W2899375613 cites W2137813581 @default.
- W2899375613 cites W2138148774 @default.
- W2899375613 cites W2139812092 @default.
- W2899375613 cites W2146620998 @default.
- W2899375613 cites W2146641075 @default.
- W2899375613 cites W2146906344 @default.
- W2899375613 cites W2151729750 @default.
- W2899375613 cites W2152246075 @default.
- W2899375613 cites W2154751475 @default.
- W2899375613 cites W2157098139 @default.
- W2899375613 cites W2167947196 @default.
- W2899375613 cites W2964343051 @default.
- W2899375613 doi "https://doi.org/10.1109/tsp.2018.2872864" @default.
- W2899375613 hasPublicationYear "2018" @default.
- W2899375613 type Work @default.
- W2899375613 sameAs 2899375613 @default.
- W2899375613 citedByCount "1" @default.
- W2899375613 countsByYear W28993756132021 @default.
- W2899375613 crossrefType "journal-article" @default.
- W2899375613 hasAuthorship W2899375613A5016476726 @default.
- W2899375613 hasAuthorship W2899375613A5025220924 @default.
- W2899375613 hasAuthorship W2899375613A5071376729 @default.
- W2899375613 hasAuthorship W2899375613A5072306746 @default.
- W2899375613 hasConcept C105795698 @default.
- W2899375613 hasConcept C107673813 @default.
- W2899375613 hasConcept C11413529 @default.
- W2899375613 hasConcept C114614502 @default.
- W2899375613 hasConcept C119857082 @default.
- W2899375613 hasConcept C121332964 @default.
- W2899375613 hasConcept C143724316 @default.
- W2899375613 hasConcept C151406439 @default.
- W2899375613 hasConcept C151730666 @default.
- W2899375613 hasConcept C154945302 @default.
- W2899375613 hasConcept C157286648 @default.
- W2899375613 hasConcept C158622935 @default.
- W2899375613 hasConcept C206833254 @default.
- W2899375613 hasConcept C2776214188 @default.
- W2899375613 hasConcept C2779377595 @default.
- W2899375613 hasConcept C33923547 @default.
- W2899375613 hasConcept C41008148 @default.
- W2899375613 hasConcept C43555835 @default.
- W2899375613 hasConcept C45374587 @default.
- W2899375613 hasConcept C52421305 @default.
- W2899375613 hasConcept C62520636 @default.
- W2899375613 hasConcept C74193536 @default.
- W2899375613 hasConcept C86803240 @default.
- W2899375613 hasConceptScore W2899375613C105795698 @default.
- W2899375613 hasConceptScore W2899375613C107673813 @default.
- W2899375613 hasConceptScore W2899375613C11413529 @default.
- W2899375613 hasConceptScore W2899375613C114614502 @default.
- W2899375613 hasConceptScore W2899375613C119857082 @default.
- W2899375613 hasConceptScore W2899375613C121332964 @default.
- W2899375613 hasConceptScore W2899375613C143724316 @default.
- W2899375613 hasConceptScore W2899375613C151406439 @default.
- W2899375613 hasConceptScore W2899375613C151730666 @default.
- W2899375613 hasConceptScore W2899375613C154945302 @default.
- W2899375613 hasConceptScore W2899375613C157286648 @default.
- W2899375613 hasConceptScore W2899375613C158622935 @default.
- W2899375613 hasConceptScore W2899375613C206833254 @default.
- W2899375613 hasConceptScore W2899375613C2776214188 @default.
- W2899375613 hasConceptScore W2899375613C2779377595 @default.
- W2899375613 hasConceptScore W2899375613C33923547 @default.
- W2899375613 hasConceptScore W2899375613C41008148 @default.
- W2899375613 hasConceptScore W2899375613C43555835 @default.
- W2899375613 hasConceptScore W2899375613C45374587 @default.