Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899376543> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2899376543 abstract "Nowadays, the Ni-Co-Mn-In Heusler alloys have drawn a much attention due to a series of functional properties such as the shape memory effect, giant magnetoresistance and magnetocaloric effects etc., which are promising for future technologies [1]-[3]. Usually, the most of unique properties are associated with the martensitic transformation between the martensite with complex magnetic order and the austenite with ferromagnetic order. Moreover, there are strong competing magnetic interactions in the vicinity of magnetostructural phase transition, which are responsible for the change in magnetization. Evidently, the manipulation of magnetic interactions in both martensite and austenite leads to change the magnitude of the magnetization drop and to achieve the better magnetocaloric properties across the martensitic transformation. The present theoretical study is addressed the question of effect of competing magnetic interactions on magnetic and magnetocaloric properties of Ni-Co-Mn-In alloys through the addition of structural defects. Evidently, samples prepared experimentally without an additional annealing can contain many impurities and defects. Opposite, the influence of additional annealing can result to a highly ordered structure with minimum defect concentration. In this connection for compositions without additional annealing, we focused attention on the formation of structural (antisite) disorder between In and Mn atoms on the corresponding In and Mn sublattices with concentration y which can be described by Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1+x</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1-x</sub> = Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1-y</sub> Sn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>y</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>x+y</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1-x-y</sub> , where x is the Mn excess concentration and y is the degree of antisite disorder) [4]. While for the samples upon additional annealing, the ordered structure (without defects, y = 0 is proposed. Our methodology consists of ab initio calculations and Monte Carlo (MC) simulations based on the Potts-Blume-Emery-Griffiths model allowing to simulate austenite-martensite transformation as well as magnetic and magnetocaloric properties [5]-[7]. Two subsequent steps were used in our calculations. Firstly, we calculated the exchange coupling constants (J <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ij</sub> ) using the SPR-KKR package [8] within the general gradient approximation in the form of Perdew-Burke-Ernzerhof. The chemical and structural disorders were simulated in the coherent potential approximation. The Jij calculations were done for cubic austenite (c/a = 1) and tetragonal martensite (c/a = 1.21) of Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>43</sub> Co <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>7</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>37+y</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>13-y</sub> . Here, y takes values as follows: 1.5, 3.25, and 6.5. We note that the equilibrium lattice parameters for austenite and martensite were taken from our previous calculations (See Ref. [7]), and we supposed that lattice parameters change no with increasing degree of anisate disorder (y). Secondly, using the calculated exchange constants as a function of distance between interacting atoms, the MC simulations were performed. The model lattice that contains a real unit cell of Heusler alloy includes 3925 atoms with periodic boundary conditions. The configurations of excess Mn atoms (x + y) at the In sublattice and In atoms (y) at the Mn sublattice are chosen randomly and the total number of Mn and In atoms are fixed by a nominal composition Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>43</sub> Co <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>7</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>37+y</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>13-y</sub> (y = 1.5, 3.25, and 6.5). The MC simulations were performed using the Metropolis algorithm and 500 000 MC steps. Note that all model parameters expect the magnetic moments and J <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ij</sub> constants were fixed and taken from [7]. Let us discuss the effect of additional annealing in the framework of theoretical approach assuming the presence of antisite disorder between In and Mn sublattice in Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>43</sub> Co <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>7</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>37</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>13</sub> alloy. In Fig. 1a we present calculated nearest exchange coupling constants for austenite of Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>43</sub> Co <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>7</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>37+y</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>13-y</sub> as a function of antisite defect concentration. As can be seen that all interactions with Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> (Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> ) atoms decrease (increase) with increasing y, respectively. Here Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1(2)</sub> atoms denote Mn atoms located at Mn (In) sublattice, respectively. This observation is associated with the fact that the number of Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> atoms becomes smaller with an increase of antisite disorder. MC simulations of thermomagnetization curves for Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>43</sub> Co <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>7</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>37+y</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>13-y</sub> . (y = 0 and 1.5) in magnetic field of 2 T under the heating and cooling protocols are shown in Fig. 1b. The inset contains the M(T) curves for Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>43</sub> Co <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>7</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>37+y</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>13-y</sub> under heating. Thermal hysteresis between M(T) curves around the magnetostructural phase transition for the heating and cooling processes is clearly seen. Moreover, both the magnetization and Curie temperature of austenite are found to decrease compared to the ordered case (y = 0) with increasing degree of structural disorder. Generally, theoretical magnetization trend as a function of antisite disorder is provided by the recent experiments for both ordered and disordered Ni <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>50</sub> Mn <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>34.5</sub> In <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>15.5</sub> alloys [9], [10]. In the framework of theoretical approach involving first-principles and Monte Carlo methods, a set of magnetization curves for the studied system are calculated. It is shown that the account of structural disorder (anti-site defects) results to decrease the magnetization and magnetocaloric properties around the magnetostructural transformation." @default.
- W2899376543 created "2018-11-09" @default.
- W2899376543 creator A5031300739 @default.
- W2899376543 creator A5046178226 @default.
- W2899376543 creator A5069719946 @default.
- W2899376543 date "2018-04-01" @default.
- W2899376543 modified "2023-09-23" @default.
- W2899376543 title "The effect of antisite disorder on magnetic and magnetocaloric properties of Ni-Co-Mn-In alloys: ab initio and Monte Carlo studies" @default.
- W2899376543 doi "https://doi.org/10.1109/intmag.2018.8508387" @default.
- W2899376543 hasPublicationYear "2018" @default.
- W2899376543 type Work @default.
- W2899376543 sameAs 2899376543 @default.
- W2899376543 citedByCount "0" @default.
- W2899376543 crossrefType "proceedings-article" @default.
- W2899376543 hasAuthorship W2899376543A5031300739 @default.
- W2899376543 hasAuthorship W2899376543A5046178226 @default.
- W2899376543 hasAuthorship W2899376543A5069719946 @default.
- W2899376543 hasConcept C115260700 @default.
- W2899376543 hasConcept C117958382 @default.
- W2899376543 hasConcept C121332964 @default.
- W2899376543 hasConcept C178790620 @default.
- W2899376543 hasConcept C185592680 @default.
- W2899376543 hasConcept C186116631 @default.
- W2899376543 hasConcept C18747287 @default.
- W2899376543 hasConcept C191897082 @default.
- W2899376543 hasConcept C192562407 @default.
- W2899376543 hasConcept C197162081 @default.
- W2899376543 hasConcept C26873012 @default.
- W2899376543 hasConcept C2777855556 @default.
- W2899376543 hasConcept C32546565 @default.
- W2899376543 hasConcept C62520636 @default.
- W2899376543 hasConcept C71987851 @default.
- W2899376543 hasConcept C73170135 @default.
- W2899376543 hasConcept C8010536 @default.
- W2899376543 hasConcept C82217956 @default.
- W2899376543 hasConcept C87976508 @default.
- W2899376543 hasConcept C96288455 @default.
- W2899376543 hasConcept C97355855 @default.
- W2899376543 hasConceptScore W2899376543C115260700 @default.
- W2899376543 hasConceptScore W2899376543C117958382 @default.
- W2899376543 hasConceptScore W2899376543C121332964 @default.
- W2899376543 hasConceptScore W2899376543C178790620 @default.
- W2899376543 hasConceptScore W2899376543C185592680 @default.
- W2899376543 hasConceptScore W2899376543C186116631 @default.
- W2899376543 hasConceptScore W2899376543C18747287 @default.
- W2899376543 hasConceptScore W2899376543C191897082 @default.
- W2899376543 hasConceptScore W2899376543C192562407 @default.
- W2899376543 hasConceptScore W2899376543C197162081 @default.
- W2899376543 hasConceptScore W2899376543C26873012 @default.
- W2899376543 hasConceptScore W2899376543C2777855556 @default.
- W2899376543 hasConceptScore W2899376543C32546565 @default.
- W2899376543 hasConceptScore W2899376543C62520636 @default.
- W2899376543 hasConceptScore W2899376543C71987851 @default.
- W2899376543 hasConceptScore W2899376543C73170135 @default.
- W2899376543 hasConceptScore W2899376543C8010536 @default.
- W2899376543 hasConceptScore W2899376543C82217956 @default.
- W2899376543 hasConceptScore W2899376543C87976508 @default.
- W2899376543 hasConceptScore W2899376543C96288455 @default.
- W2899376543 hasConceptScore W2899376543C97355855 @default.
- W2899376543 hasLocation W28993765431 @default.
- W2899376543 hasOpenAccess W2899376543 @default.
- W2899376543 hasPrimaryLocation W28993765431 @default.
- W2899376543 hasRelatedWork W1857237982 @default.
- W2899376543 hasRelatedWork W2001899887 @default.
- W2899376543 hasRelatedWork W2048773712 @default.
- W2899376543 hasRelatedWork W2078877008 @default.
- W2899376543 hasRelatedWork W2089936338 @default.
- W2899376543 hasRelatedWork W2165412026 @default.
- W2899376543 hasRelatedWork W2242273843 @default.
- W2899376543 hasRelatedWork W2413535840 @default.
- W2899376543 hasRelatedWork W2906264411 @default.
- W2899376543 hasRelatedWork W2969327358 @default.
- W2899376543 isParatext "false" @default.
- W2899376543 isRetracted "false" @default.
- W2899376543 magId "2899376543" @default.
- W2899376543 workType "article" @default.