Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899377130> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2899377130 abstract "It is well known that distributed cyber attacks simultaneously launched from many hosts have caused the most serious problems in recent years including problems of privacy leakage and denial of services. Thus, how to detect those attacks at early stage has become an important and urgent topic in the cyber security community. For this purpose, recognizing C&C (Command & Control) communication between compromised bots and the C&C server becomes a crucially important issue, because C&C communication is in the preparation phase of distributed attacks. Although attack detection based on signature has been practically applied since long ago, it is well-known that it cannot efficiently deal with new kinds of attacks. In recent years, ML(Machine learning)-based detection methods have been studied widely. In those methods, feature selection is obviously very important to the detection performance. We once utilized up to 55 features to pick out C&C traffic in order to accomplish early detection of DDoS attacks. In this work, we try to answer the question that Are all of those features really necessary? We mainly investigate how the detection performance moves as the features are removed from those having lowest importance and we try to make it clear that what features should be payed attention for early detection of distributed attacks. We use honeypot data collected during the period from 2008 to 2013. SVM(Support Vector Machine) and PCA(Principal Component Analysis) are utilized for feature selection and SVM and RF(Random Forest) are for building the classifier. We find that the detection performance is generally getting better if more features are utilized. However, after the number of features has reached around 40, the detection performance will not change much even more features are used. It is also verified that, in some specific cases, more features do not always means a better detection performance. We also discuss 10 important features which have the biggest influence on classification." @default.
- W2899377130 created "2018-11-09" @default.
- W2899377130 creator A5001126368 @default.
- W2899377130 creator A5041085631 @default.
- W2899377130 creator A5057378573 @default.
- W2899377130 creator A5079342045 @default.
- W2899377130 date "2018-08-01" @default.
- W2899377130 modified "2023-10-01" @default.
- W2899377130 title "Feature Selection for Machine Learning-Based Early Detection of Distributed Cyber Attacks" @default.
- W2899377130 cites W1484777458 @default.
- W2899377130 cites W1531298268 @default.
- W2899377130 cites W2010043809 @default.
- W2899377130 cites W2040584032 @default.
- W2899377130 cites W2096030967 @default.
- W2899377130 cites W2101916222 @default.
- W2899377130 cites W2119227347 @default.
- W2899377130 cites W2122646361 @default.
- W2899377130 cites W2136549260 @default.
- W2899377130 cites W2141177935 @default.
- W2899377130 cites W2143426320 @default.
- W2899377130 cites W2147029177 @default.
- W2899377130 cites W2586130762 @default.
- W2899377130 doi "https://doi.org/10.1109/dasc/picom/datacom/cyberscitec.2018.00040" @default.
- W2899377130 hasPublicationYear "2018" @default.
- W2899377130 type Work @default.
- W2899377130 sameAs 2899377130 @default.
- W2899377130 citedByCount "19" @default.
- W2899377130 countsByYear W28993771302019 @default.
- W2899377130 countsByYear W28993771302020 @default.
- W2899377130 countsByYear W28993771302021 @default.
- W2899377130 countsByYear W28993771302022 @default.
- W2899377130 countsByYear W28993771302023 @default.
- W2899377130 crossrefType "proceedings-article" @default.
- W2899377130 hasAuthorship W2899377130A5001126368 @default.
- W2899377130 hasAuthorship W2899377130A5041085631 @default.
- W2899377130 hasAuthorship W2899377130A5057378573 @default.
- W2899377130 hasAuthorship W2899377130A5079342045 @default.
- W2899377130 hasConcept C110875604 @default.
- W2899377130 hasConcept C119857082 @default.
- W2899377130 hasConcept C12267149 @default.
- W2899377130 hasConcept C124101348 @default.
- W2899377130 hasConcept C136764020 @default.
- W2899377130 hasConcept C148483581 @default.
- W2899377130 hasConcept C154945302 @default.
- W2899377130 hasConcept C169258074 @default.
- W2899377130 hasConcept C35525427 @default.
- W2899377130 hasConcept C38652104 @default.
- W2899377130 hasConcept C38822068 @default.
- W2899377130 hasConcept C41008148 @default.
- W2899377130 hasConcept C52622490 @default.
- W2899377130 hasConcept C95623464 @default.
- W2899377130 hasConceptScore W2899377130C110875604 @default.
- W2899377130 hasConceptScore W2899377130C119857082 @default.
- W2899377130 hasConceptScore W2899377130C12267149 @default.
- W2899377130 hasConceptScore W2899377130C124101348 @default.
- W2899377130 hasConceptScore W2899377130C136764020 @default.
- W2899377130 hasConceptScore W2899377130C148483581 @default.
- W2899377130 hasConceptScore W2899377130C154945302 @default.
- W2899377130 hasConceptScore W2899377130C169258074 @default.
- W2899377130 hasConceptScore W2899377130C35525427 @default.
- W2899377130 hasConceptScore W2899377130C38652104 @default.
- W2899377130 hasConceptScore W2899377130C38822068 @default.
- W2899377130 hasConceptScore W2899377130C41008148 @default.
- W2899377130 hasConceptScore W2899377130C52622490 @default.
- W2899377130 hasConceptScore W2899377130C95623464 @default.
- W2899377130 hasLocation W28993771301 @default.
- W2899377130 hasOpenAccess W2899377130 @default.
- W2899377130 hasPrimaryLocation W28993771301 @default.
- W2899377130 hasRelatedWork W2742495185 @default.
- W2899377130 hasRelatedWork W2985924212 @default.
- W2899377130 hasRelatedWork W3034132578 @default.
- W2899377130 hasRelatedWork W3043172660 @default.
- W2899377130 hasRelatedWork W3195168932 @default.
- W2899377130 hasRelatedWork W4285157290 @default.
- W2899377130 hasRelatedWork W4293525103 @default.
- W2899377130 hasRelatedWork W4327511089 @default.
- W2899377130 hasRelatedWork W16836940 @default.
- W2899377130 hasRelatedWork W2345184372 @default.
- W2899377130 isParatext "false" @default.
- W2899377130 isRetracted "false" @default.
- W2899377130 magId "2899377130" @default.
- W2899377130 workType "article" @default.