Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899402485> ?p ?o ?g. }
- W2899402485 abstract "Author(s): Yadwadkar, Neeraja Jayant | Advisor(s): Katz, Randy H.; Gonzalez, Joseph E. | Abstract: Traditional resource management techniques that rely on simple heuristics often fail to achieve predictable performance in contemporary complex systems that span physical servers, virtual servers, private and/or public clouds. My research aims to bring the benefits of data-driven models to resource management of such complex systems. In my dissertation, I argue that the advancements in machine learning can be leveraged to manage and optimize today's systems by deriving actionable insights from the performance and utilization data these systems generate. To realize this vision of model-based resource management, we need to deal with the key challenges data-driven models raise: uncertainty in predictions, cost of training, generalizability from benchmark datasets to real-world systems datasets, and interpretability of the models.In this dissertation, to demonstrate how to handle these challenges, we chose two main problem domains: (I) Scheduling in parallel data intensive computational frameworks for improved tail latencies, and (II) Performance-aware resource allocation in the public cloud environments for meeting user-specified performance and cost goals.We begin by presenting Wrangler, a system that predicts when stragglers (slow-running tasks) are going to occur based on cluster resource utilization counters and makes scheduling decisions to avoid such situations. Wrangler introduces a notion of a confidence measure with these predictions to overcome modeling uncertainty. We then describe our Multi-Task Learning formulations that share information between the various models, allowing us to significantly reduce the cost of training. To capture the challenges of resource allocation in the public cloud environments, we present key observations from our empirical analysis based on performance profiles of workloads executing across different public cloud environments. Finally, we describe PARIS, a Performance-Aware Resource Inference System, that we built to enable cloud users to select the best VM (virtual machine) for their applications in the public cloud environments so as to satisfy any performance and cost constraints." @default.
- W2899402485 created "2018-11-09" @default.
- W2899402485 creator A5031510918 @default.
- W2899402485 date "2018-01-01" @default.
- W2899402485 modified "2023-09-26" @default.
- W2899402485 title "Machine Learning for Automatic Resource Management in the Datacenter and the Cloud" @default.
- W2899402485 cites W10242039 @default.
- W2899402485 cites W1448681276 @default.
- W2899402485 cites W1464363888 @default.
- W2899402485 cites W1493147916 @default.
- W2899402485 cites W1506806321 @default.
- W2899402485 cites W1520871589 @default.
- W2899402485 cites W1563088657 @default.
- W2899402485 cites W1573776458 @default.
- W2899402485 cites W1576994079 @default.
- W2899402485 cites W1579147384 @default.
- W2899402485 cites W1580714733 @default.
- W2899402485 cites W1618905105 @default.
- W2899402485 cites W1736726159 @default.
- W2899402485 cites W1750643891 @default.
- W2899402485 cites W1759247996 @default.
- W2899402485 cites W1780041672 @default.
- W2899402485 cites W1846416616 @default.
- W2899402485 cites W1861377444 @default.
- W2899402485 cites W1880705124 @default.
- W2899402485 cites W1881074592 @default.
- W2899402485 cites W1890643295 @default.
- W2899402485 cites W1901756263 @default.
- W2899402485 cites W1903497807 @default.
- W2899402485 cites W1939941161 @default.
- W2899402485 cites W1966557675 @default.
- W2899402485 cites W1977026930 @default.
- W2899402485 cites W1979361375 @default.
- W2899402485 cites W1985229168 @default.
- W2899402485 cites W1985539519 @default.
- W2899402485 cites W1988781135 @default.
- W2899402485 cites W2022678927 @default.
- W2899402485 cites W2025549137 @default.
- W2899402485 cites W2026585238 @default.
- W2899402485 cites W2029129836 @default.
- W2899402485 cites W2045704273 @default.
- W2899402485 cites W2087946700 @default.
- W2899402485 cites W2092466090 @default.
- W2899402485 cites W2092480885 @default.
- W2899402485 cites W2096125134 @default.
- W2899402485 cites W2098278566 @default.
- W2899402485 cites W2100830825 @default.
- W2899402485 cites W2101234009 @default.
- W2899402485 cites W2102709380 @default.
- W2899402485 cites W2103363198 @default.
- W2899402485 cites W2103519186 @default.
- W2899402485 cites W2105579778 @default.
- W2899402485 cites W2106098710 @default.
- W2899402485 cites W2107002253 @default.
- W2899402485 cites W2108198948 @default.
- W2899402485 cites W2110086534 @default.
- W2899402485 cites W2110104287 @default.
- W2899402485 cites W2112013978 @default.
- W2899402485 cites W2114623221 @default.
- W2899402485 cites W2119191234 @default.
- W2899402485 cites W2119565742 @default.
- W2899402485 cites W2119821739 @default.
- W2899402485 cites W2120422789 @default.
- W2899402485 cites W2122808326 @default.
- W2899402485 cites W2126083918 @default.
- W2899402485 cites W2129542763 @default.
- W2899402485 cites W2129726725 @default.
- W2899402485 cites W2131629857 @default.
- W2899402485 cites W2133990480 @default.
- W2899402485 cites W2135046866 @default.
- W2899402485 cites W2135106139 @default.
- W2899402485 cites W2135505107 @default.
- W2899402485 cites W2138019504 @default.
- W2899402485 cites W2139212933 @default.
- W2899402485 cites W2140486418 @default.
- W2899402485 cites W2140509629 @default.
- W2899402485 cites W2140919237 @default.
- W2899402485 cites W2141563029 @default.
- W2899402485 cites W2144531255 @default.
- W2899402485 cites W2144752499 @default.
- W2899402485 cites W2146434221 @default.
- W2899402485 cites W2148143831 @default.
- W2899402485 cites W2150139096 @default.
- W2899402485 cites W2153819496 @default.
- W2899402485 cites W2154042331 @default.
- W2899402485 cites W2154983209 @default.
- W2899402485 cites W2156909104 @default.
- W2899402485 cites W2163291889 @default.
- W2899402485 cites W2163961697 @default.
- W2899402485 cites W2169965429 @default.
- W2899402485 cites W2170616854 @default.
- W2899402485 cites W2171188027 @default.
- W2899402485 cites W2173213060 @default.
- W2899402485 cites W2209976336 @default.
- W2899402485 cites W2230666400 @default.
- W2899402485 cites W2296319761 @default.
- W2899402485 cites W2309679942 @default.
- W2899402485 cites W2401707914 @default.
- W2899402485 cites W2508501782 @default.
- W2899402485 cites W2568772110 @default.