Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899402586> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2899402586 endingPage "245" @default.
- W2899402586 startingPage "241" @default.
- W2899402586 abstract "We extend some theoretical results in the frame of concurrency theory, which were presented in [1]. In particular, we focus on partially ordered sets (posets) as models of nonsequential processes [2] and we apply the same construction as in [1] of a lattice of subsets of points of the poset via a closure operator defined on the basis of the concurrency relation, viewed as lack of causal dependence. The inspiring idea is related to works by C. A. Petri [6]. Petri proposed a theory of systems based on abstract models to represent the behaviour and the properties of concurrent and distributed systems, which takes into account the principles of the special relativity. A crucial difference between the standard physical theories and the framework in which Petri develops his own theory comes from the use of the continuum as the underlying model in physics. In the combinatorial model proposed by Petri, the usual notion of density of the continuum model is replaced by two properties strictly related and required for the posets modelling a discrete space-time: the so-called K-density and a weaker form called N-density. K-density is based on the idea that any maximal antichain (or cut) in a poset and any maximal chain (or line) have a nonempty intersection. A line can be interpreted as a sequential subprocess, while a cut corresponds to a time instant and K-density requires that, at any time instant, any sequential subprocess must be in some state or changing its state. N-density can be viewed as a sort of local density and was introduced by Petri as an axiom for posets modelling nonsequential processes. Occurrence nets, a fundamental model of such processes, are indeed N-dense, whereas for example event structures [5] are in general not N-dense. In [1] we have considered as model of non sequential processes a class of locally finite posets and shown that the closed subsets, obtained via a closure operator defined on the basis of concurrency, correspond in general to subprocesses which result to be ‘closed’ with respect to the Petri net firing rule. Moreover, we have shown that if the poset is N-dense, then the lattice of closed subsets is orthomodular. Orthomodular lattices are families of partially overlapping Boolean algebras and have been studied as the algebraic model of quantum logic [7]." @default.
- W2899402586 created "2018-11-09" @default.
- W2899402586 creator A5031172251 @default.
- W2899402586 creator A5039309155 @default.
- W2899402586 creator A5071166273 @default.
- W2899402586 date "2014-01-01" @default.
- W2899402586 modified "2023-09-23" @default.
- W2899402586 title "Orthomodular algebraic lattices related to combinatorial posets" @default.
- W2899402586 hasPublicationYear "2014" @default.
- W2899402586 type Work @default.
- W2899402586 sameAs 2899402586 @default.
- W2899402586 citedByCount "0" @default.
- W2899402586 crossrefType "journal-article" @default.
- W2899402586 hasAuthorship W2899402586A5031172251 @default.
- W2899402586 hasAuthorship W2899402586A5039309155 @default.
- W2899402586 hasAuthorship W2899402586A5071166273 @default.
- W2899402586 hasConcept C111919701 @default.
- W2899402586 hasConcept C11413529 @default.
- W2899402586 hasConcept C114614502 @default.
- W2899402586 hasConcept C118615104 @default.
- W2899402586 hasConcept C121332964 @default.
- W2899402586 hasConcept C134306372 @default.
- W2899402586 hasConcept C136119220 @default.
- W2899402586 hasConcept C136134351 @default.
- W2899402586 hasConcept C180645754 @default.
- W2899402586 hasConcept C193702766 @default.
- W2899402586 hasConcept C202444582 @default.
- W2899402586 hasConcept C24890656 @default.
- W2899402586 hasConcept C2781204021 @default.
- W2899402586 hasConcept C33923547 @default.
- W2899402586 hasConcept C38677869 @default.
- W2899402586 hasConcept C41008148 @default.
- W2899402586 hasConcept C9376300 @default.
- W2899402586 hasConceptScore W2899402586C111919701 @default.
- W2899402586 hasConceptScore W2899402586C11413529 @default.
- W2899402586 hasConceptScore W2899402586C114614502 @default.
- W2899402586 hasConceptScore W2899402586C118615104 @default.
- W2899402586 hasConceptScore W2899402586C121332964 @default.
- W2899402586 hasConceptScore W2899402586C134306372 @default.
- W2899402586 hasConceptScore W2899402586C136119220 @default.
- W2899402586 hasConceptScore W2899402586C136134351 @default.
- W2899402586 hasConceptScore W2899402586C180645754 @default.
- W2899402586 hasConceptScore W2899402586C193702766 @default.
- W2899402586 hasConceptScore W2899402586C202444582 @default.
- W2899402586 hasConceptScore W2899402586C24890656 @default.
- W2899402586 hasConceptScore W2899402586C2781204021 @default.
- W2899402586 hasConceptScore W2899402586C33923547 @default.
- W2899402586 hasConceptScore W2899402586C38677869 @default.
- W2899402586 hasConceptScore W2899402586C41008148 @default.
- W2899402586 hasConceptScore W2899402586C9376300 @default.
- W2899402586 hasLocation W28994025861 @default.
- W2899402586 hasOpenAccess W2899402586 @default.
- W2899402586 hasPrimaryLocation W28994025861 @default.
- W2899402586 hasRelatedWork W1559687517 @default.
- W2899402586 hasRelatedWork W1567794727 @default.
- W2899402586 hasRelatedWork W1597251926 @default.
- W2899402586 hasRelatedWork W1645769175 @default.
- W2899402586 hasRelatedWork W1790921638 @default.
- W2899402586 hasRelatedWork W2018016296 @default.
- W2899402586 hasRelatedWork W2044089506 @default.
- W2899402586 hasRelatedWork W2061158335 @default.
- W2899402586 hasRelatedWork W2274584817 @default.
- W2899402586 hasRelatedWork W2295836317 @default.
- W2899402586 hasRelatedWork W2465875632 @default.
- W2899402586 hasRelatedWork W2902366142 @default.
- W2899402586 hasRelatedWork W2913583188 @default.
- W2899402586 hasRelatedWork W2914001177 @default.
- W2899402586 hasRelatedWork W2949861466 @default.
- W2899402586 hasRelatedWork W2950608318 @default.
- W2899402586 hasRelatedWork W2981287029 @default.
- W2899402586 hasRelatedWork W3031008428 @default.
- W2899402586 hasRelatedWork W3048380656 @default.
- W2899402586 hasRelatedWork W3140920220 @default.
- W2899402586 hasVolume "1231" @default.
- W2899402586 isParatext "false" @default.
- W2899402586 isRetracted "false" @default.
- W2899402586 magId "2899402586" @default.
- W2899402586 workType "article" @default.