Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899406687> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2899406687 endingPage "139" @default.
- W2899406687 startingPage "127" @default.
- W2899406687 abstract "Purpose A dynamic bowtie filter can modulate flux along both fan and view angles for reduced patient dose, scatter, and required photon flux, which is especially important for photon counting detectors ( PCD s). Among the proposed dynamic bowtie designs, the piecewise‐linear attenuator (Hsieh and Pelc, Med Phys . 2013;40:031910) offers more flexibility than conventional filters, but relies on analog positioning of a limited number of wedges. In this work, we study our previously proposed dynamic attenuator design, the fluid‐filled dynamic bowtie filter ( FDBF ) that has digital control. Specifically, we use computer simulations to study fluence modulation, reconstructed image noise, and radiation dose and to compare it to other attenuators. FDBF is an array of small channels each of which, if it can be filled with dense fluid or emptied quickly, has a binary effect on the flux. The cumulative attenuation from each channel along the x‐ray path contributes to the FDBF total attenuation. Methods An algorithm is proposed for selecting which FDBF channels should be filled. Two optimization metrics are considered: minimizing the maximum‐count‐rate for PCD s and minimizing peak‐variance for energy‐integrating detectors ( EID s) at fixed radiation dose (for optimizing dose efficiency). Using simulated chest, abdomen, and shoulder data, the performance is compared with a conventional bowtie and a piecewise‐linear attenuator. For minimizing peak‐variance, a perfect‐attenuator (hypothetical filter capable of adjusting the fluence of each ray individually) and flat‐variance attenuator are also included in the comparison. Two possible fluids, solutions of zinc bromide and gadolinium chloride, were tested. Results To obtain the same SNR as routine clinical protocols, the proposed FDBF reduces the maximum‐count‐rate (across projection data, averaged over the test objects) of PCD s to 1.2 Mcps/mm 2 , which is 55.8 and 3.3 times lower than the max‐count‐rate of the conventional bowtie and the piecewise‐linear bowtie, respectively. (Averaged across objects for FDBF , the max‐count‐rate without object and FDBF is 2063.5 Mcps/mm 2 , and the max‐count‐rate with object without FDBF is 749.8 Mcps/mm 2 .) Moreover, for the peak‐variance analysis, the FDBF can reduce entrance‐energy‐fluence (sum of energy incident on objects, used as a surrogate for dose) to 34% of the entrance‐energy‐fluence from the conventional filter on average while achieving the same peak noise level. Its entrance‐energy‐fluence reduction performance is only 7% worse than the perfect‐attenuator on average and is 13% better than the piecewise‐linear filter for chest and shoulder. Furthermore, the noise‐map in reconstructed image domain from the FDBF is more uniform than the piecewise‐linear filter, with 3 times less variation across the object. For the dose reduction task, the zinc bromide solution performed slightly poorer than stainless steel but was better than the gadolinium chloride solution. Conclusions The FDBF allows finer control over flux distribution compared to piecewise‐linear and conventional bowtie filters. It can reduce the required maximum‐count‐rate for PCD s to a level achievable by current detector designs and offers a high dose reduction factor." @default.
- W2899406687 created "2018-11-09" @default.
- W2899406687 creator A5021787699 @default.
- W2899406687 creator A5034967738 @default.
- W2899406687 creator A5038240758 @default.
- W2899406687 date "2018-11-29" @default.
- W2899406687 modified "2023-10-15" @default.
- W2899406687 title "Fluid-filled dynamic bowtie filter: Description and comparison with other modulators" @default.
- W2899406687 cites W1979528439 @default.
- W2899406687 cites W1989754005 @default.
- W2899406687 cites W2008921887 @default.
- W2899406687 cites W2015892377 @default.
- W2899406687 cites W2022475147 @default.
- W2899406687 cites W2037468221 @default.
- W2899406687 cites W2039720976 @default.
- W2899406687 cites W2042439044 @default.
- W2899406687 cites W2059697015 @default.
- W2899406687 cites W2063887054 @default.
- W2899406687 cites W2072375646 @default.
- W2899406687 cites W2072647673 @default.
- W2899406687 cites W2084344197 @default.
- W2899406687 cites W2090013039 @default.
- W2899406687 cites W2113642685 @default.
- W2899406687 cites W2118893705 @default.
- W2899406687 cites W2289862226 @default.
- W2899406687 cites W2310976650 @default.
- W2899406687 cites W2409881781 @default.
- W2899406687 cites W2594397068 @default.
- W2899406687 cites W2625449777 @default.
- W2899406687 cites W2736239694 @default.
- W2899406687 cites W2766371297 @default.
- W2899406687 cites W2963281860 @default.
- W2899406687 cites W2979553752 @default.
- W2899406687 cites W4242302270 @default.
- W2899406687 doi "https://doi.org/10.1002/mp.13272" @default.
- W2899406687 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6322938" @default.
- W2899406687 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30383310" @default.
- W2899406687 hasPublicationYear "2018" @default.
- W2899406687 type Work @default.
- W2899406687 sameAs 2899406687 @default.
- W2899406687 citedByCount "8" @default.
- W2899406687 countsByYear W28994066872019 @default.
- W2899406687 countsByYear W28994066872020 @default.
- W2899406687 countsByYear W28994066872021 @default.
- W2899406687 countsByYear W28994066872022 @default.
- W2899406687 crossrefType "journal-article" @default.
- W2899406687 hasAuthorship W2899406687A5021787699 @default.
- W2899406687 hasAuthorship W2899406687A5034967738 @default.
- W2899406687 hasAuthorship W2899406687A5038240758 @default.
- W2899406687 hasBestOaLocation W28994066872 @default.
- W2899406687 hasConcept C106131492 @default.
- W2899406687 hasConcept C120665830 @default.
- W2899406687 hasConcept C121332964 @default.
- W2899406687 hasConcept C174847166 @default.
- W2899406687 hasConcept C184652730 @default.
- W2899406687 hasConcept C31972630 @default.
- W2899406687 hasConcept C41008148 @default.
- W2899406687 hasConcept C94915269 @default.
- W2899406687 hasConceptScore W2899406687C106131492 @default.
- W2899406687 hasConceptScore W2899406687C120665830 @default.
- W2899406687 hasConceptScore W2899406687C121332964 @default.
- W2899406687 hasConceptScore W2899406687C174847166 @default.
- W2899406687 hasConceptScore W2899406687C184652730 @default.
- W2899406687 hasConceptScore W2899406687C31972630 @default.
- W2899406687 hasConceptScore W2899406687C41008148 @default.
- W2899406687 hasConceptScore W2899406687C94915269 @default.
- W2899406687 hasFunder F4320332161 @default.
- W2899406687 hasIssue "1" @default.
- W2899406687 hasLocation W28994066871 @default.
- W2899406687 hasLocation W28994066872 @default.
- W2899406687 hasLocation W28994066873 @default.
- W2899406687 hasLocation W28994066874 @default.
- W2899406687 hasOpenAccess W2899406687 @default.
- W2899406687 hasPrimaryLocation W28994066871 @default.
- W2899406687 hasRelatedWork W1985338568 @default.
- W2899406687 hasRelatedWork W1993894524 @default.
- W2899406687 hasRelatedWork W2029067059 @default.
- W2899406687 hasRelatedWork W2048706955 @default.
- W2899406687 hasRelatedWork W2067586700 @default.
- W2899406687 hasRelatedWork W2376231556 @default.
- W2899406687 hasRelatedWork W2377963109 @default.
- W2899406687 hasRelatedWork W2387297901 @default.
- W2899406687 hasRelatedWork W247854479 @default.
- W2899406687 hasRelatedWork W4381433324 @default.
- W2899406687 hasVolume "46" @default.
- W2899406687 isParatext "false" @default.
- W2899406687 isRetracted "false" @default.
- W2899406687 magId "2899406687" @default.
- W2899406687 workType "article" @default.