Matches in SemOpenAlex for { <https://semopenalex.org/work/W2899407766> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2899407766 endingPage "60" @default.
- W2899407766 startingPage "49" @default.
- W2899407766 abstract "In the UAE, continuous flight auger piles (CFA) are the most commonly used type of foundations to construct high rise buildings, bridges, and other heavy structures due to the high groundwater table and the weak soil/rock layers near the ground surface. To minimize the risk of failure, of these CFA piles, mandatory expensive field tests need to be performed and the most important one is the Static Pile Load Test (SPLT). To minimize the number of tests required for a particular project in the field, this paper proposes using General Regression Neural Network (GRNN) to predict the pile performance ahead of any test. The data collected from thousands of loading points in over one hundred projects from Dubai, Abu Dhabi, and Al Ain cities are used to develop a GRNN capable of predicting SPLT curves with reasonable accuracy. The friction angle, unconfined compressive strength, depth, soil type, groundwater table, pile’s diameter, and pile’s length are the parameters that are input to predict the load-displacement curves of the SPLT. This approach can complement conventional SPLT and provide engineers with sufficient insight on the pile performance ahead of the actual test." @default.
- W2899407766 created "2018-11-09" @default.
- W2899407766 creator A5023455323 @default.
- W2899407766 creator A5056975523 @default.
- W2899407766 date "2018-10-30" @default.
- W2899407766 modified "2023-09-24" @default.
- W2899407766 title "The Proposed Use of Generalized Regression Neural Network to Predict the Entire Static Load Test" @default.
- W2899407766 cites W1972417871 @default.
- W2899407766 cites W1982319593 @default.
- W2899407766 cites W1995500411 @default.
- W2899407766 cites W2101066084 @default.
- W2899407766 cites W2149723649 @default.
- W2899407766 cites W2160829579 @default.
- W2899407766 cites W2279142988 @default.
- W2899407766 doi "https://doi.org/10.1007/978-3-030-01902-0_5" @default.
- W2899407766 hasPublicationYear "2018" @default.
- W2899407766 type Work @default.
- W2899407766 sameAs 2899407766 @default.
- W2899407766 citedByCount "1" @default.
- W2899407766 countsByYear W28994077662023 @default.
- W2899407766 crossrefType "book-chapter" @default.
- W2899407766 hasAuthorship W2899407766A5023455323 @default.
- W2899407766 hasAuthorship W2899407766A5056975523 @default.
- W2899407766 hasConcept C105795698 @default.
- W2899407766 hasConcept C111919701 @default.
- W2899407766 hasConcept C119857082 @default.
- W2899407766 hasConcept C127313418 @default.
- W2899407766 hasConcept C149091818 @default.
- W2899407766 hasConcept C151730666 @default.
- W2899407766 hasConcept C152877465 @default.
- W2899407766 hasConcept C161821725 @default.
- W2899407766 hasConcept C186846655 @default.
- W2899407766 hasConcept C2777267654 @default.
- W2899407766 hasConcept C2777904410 @default.
- W2899407766 hasConcept C33923547 @default.
- W2899407766 hasConcept C41008148 @default.
- W2899407766 hasConcept C50644808 @default.
- W2899407766 hasConcept C83546350 @default.
- W2899407766 hasConceptScore W2899407766C105795698 @default.
- W2899407766 hasConceptScore W2899407766C111919701 @default.
- W2899407766 hasConceptScore W2899407766C119857082 @default.
- W2899407766 hasConceptScore W2899407766C127313418 @default.
- W2899407766 hasConceptScore W2899407766C149091818 @default.
- W2899407766 hasConceptScore W2899407766C151730666 @default.
- W2899407766 hasConceptScore W2899407766C152877465 @default.
- W2899407766 hasConceptScore W2899407766C161821725 @default.
- W2899407766 hasConceptScore W2899407766C186846655 @default.
- W2899407766 hasConceptScore W2899407766C2777267654 @default.
- W2899407766 hasConceptScore W2899407766C2777904410 @default.
- W2899407766 hasConceptScore W2899407766C33923547 @default.
- W2899407766 hasConceptScore W2899407766C41008148 @default.
- W2899407766 hasConceptScore W2899407766C50644808 @default.
- W2899407766 hasConceptScore W2899407766C83546350 @default.
- W2899407766 hasLocation W28994077661 @default.
- W2899407766 hasOpenAccess W2899407766 @default.
- W2899407766 hasPrimaryLocation W28994077661 @default.
- W2899407766 hasRelatedWork W1966753892 @default.
- W2899407766 hasRelatedWork W1970158984 @default.
- W2899407766 hasRelatedWork W2012241321 @default.
- W2899407766 hasRelatedWork W2060912888 @default.
- W2899407766 hasRelatedWork W2080727847 @default.
- W2899407766 hasRelatedWork W2082008989 @default.
- W2899407766 hasRelatedWork W2119696881 @default.
- W2899407766 hasRelatedWork W2359645249 @default.
- W2899407766 hasRelatedWork W2374407646 @default.
- W2899407766 hasRelatedWork W4251287307 @default.
- W2899407766 isParatext "false" @default.
- W2899407766 isRetracted "false" @default.
- W2899407766 magId "2899407766" @default.
- W2899407766 workType "book-chapter" @default.